Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import uuid
|
4 |
+
import httpx
|
5 |
+
import gradio as gr
|
6 |
+
from fastapi import FastAPI, HTTPException, Request
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
8 |
+
import uvicorn
|
9 |
+
import asyncio
|
10 |
+
|
11 |
+
# β
Securely Load Hugging Face Token
|
12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
+
if not HF_TOKEN:
|
14 |
+
raise ValueError("β HF_TOKEN not found! Set it in Hugging Face Secrets.")
|
15 |
+
|
16 |
+
# β
Load Model Configuration
|
17 |
+
MODEL_NAME = "hpyapali/tinyllama-workout"
|
18 |
+
event_store = {} # Store AI responses with event_id
|
19 |
+
|
20 |
+
app = FastAPI()
|
21 |
+
|
22 |
+
# β
Log server restart
|
23 |
+
print("π Restarting Hugging Face AI Model Server...")
|
24 |
+
|
25 |
+
# β
Load AI Model
|
26 |
+
try:
|
27 |
+
print("π Loading AI Model...")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
30 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
31 |
+
print("β
AI Model Loaded Successfully!")
|
32 |
+
except Exception as e:
|
33 |
+
print(f"β Error loading model: {e}")
|
34 |
+
pipe = None
|
35 |
+
|
36 |
+
|
37 |
+
# β
AI Function - Analyzes workout data
|
38 |
+
def analyze_workouts(last_workouts: str):
|
39 |
+
"""Generates AI-based workout rankings based on heart rate recovery."""
|
40 |
+
if pipe is None:
|
41 |
+
return "β AI model is not loaded."
|
42 |
+
|
43 |
+
if not last_workouts.strip():
|
44 |
+
return "β No workout data provided."
|
45 |
+
|
46 |
+
instruction = (
|
47 |
+
"You are a fitness AI assistant. Rank the following workouts based on heart rate recovery after 2 minutes."
|
48 |
+
"\n\n### Ranking Rules:"
|
49 |
+
"\n- A **larger heart rate dip** indicates better recovery."
|
50 |
+
"\n- If two workouts have the same HR dip, **rank by highest peak HR**."
|
51 |
+
"\n\n### Workouts Data:\n"
|
52 |
+
f"{last_workouts}"
|
53 |
+
"\n\n### Output Format (Rank from best to worst, no explanation, just rankings):"
|
54 |
+
"\n1. Best: Running - HR dip: 28 bpm"
|
55 |
+
"\n2. Cycling - HR dip: 25 bpm"
|
56 |
+
"\n3. Rowing - HR dip: 22 bpm"
|
57 |
+
"\n4. Strength Training - HR dip: 18 bpm"
|
58 |
+
"\n5. Walking - HR dip: 12 bpm"
|
59 |
+
"\n6. Yoga - HR dip: 8 bpm"
|
60 |
+
)
|
61 |
+
|
62 |
+
try:
|
63 |
+
result = pipe(
|
64 |
+
instruction,
|
65 |
+
max_new_tokens=250,
|
66 |
+
temperature=0.3,
|
67 |
+
top_p=0.9,
|
68 |
+
do_sample=True,
|
69 |
+
return_full_text=False
|
70 |
+
)
|
71 |
+
|
72 |
+
if not result or not result[0].get("generated_text", "").strip():
|
73 |
+
return "β AI did not generate a valid response."
|
74 |
+
|
75 |
+
return result[0]["generated_text"].strip()
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
return f"β Error generating workout recommendation: {str(e)}"
|
79 |
+
|
80 |
+
|
81 |
+
# β
API Route for Processing Workout Data
|
82 |
+
@app.post("/gradio_api/call/predict")
|
83 |
+
async def process_workout_request(request: Request):
|
84 |
+
try:
|
85 |
+
req_body = await request.json()
|
86 |
+
print("π© RAW REQUEST FROM HF:", req_body)
|
87 |
+
|
88 |
+
if "data" not in req_body or not isinstance(req_body["data"], list):
|
89 |
+
raise HTTPException(status_code=400, detail="Invalid request format: 'data' must be a list.")
|
90 |
+
|
91 |
+
last_workouts = req_body["data"][0]
|
92 |
+
event_id = str(uuid.uuid4())
|
93 |
+
|
94 |
+
print(f"β
Processing AI Request - Event ID: {event_id}")
|
95 |
+
|
96 |
+
response_text = analyze_workouts(last_workouts)
|
97 |
+
|
98 |
+
event_store[event_id] = response_text
|
99 |
+
|
100 |
+
webhook_url = req_body.get("webhook_url")
|
101 |
+
if webhook_url:
|
102 |
+
print(f"π‘ Sending response to Webhook: {webhook_url}")
|
103 |
+
async with httpx.AsyncClient() as client:
|
104 |
+
await client.post(webhook_url, json={"event_id": event_id, "data": [response_text]})
|
105 |
+
|
106 |
+
return {"event_id": event_id}
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"β Error processing request: {e}")
|
110 |
+
raise HTTPException(status_code=500, detail=str(e))
|
111 |
+
|
112 |
+
|
113 |
+
# β
Polling API (If Webhook Fails)
|
114 |
+
@app.get("/gradio_api/poll/{event_id}")
|
115 |
+
async def poll(event_id: str):
|
116 |
+
"""Fetches stored AI response for a given event ID."""
|
117 |
+
if event_id in event_store:
|
118 |
+
return {"data": [event_store.pop(event_id)]}
|
119 |
+
return {"detail": "Not Found"}
|
120 |
+
|
121 |
+
|
122 |
+
# β
Webhook Receiver (For Debugging Webhook Calls)
|
123 |
+
@app.post("/fineTuneModel")
|
124 |
+
async def receive_webhook(request: Request):
|
125 |
+
"""Handles webhook responses (useful for debugging webhook calls)."""
|
126 |
+
try:
|
127 |
+
req_body = await request.json()
|
128 |
+
print("π© Webhook Received:", req_body)
|
129 |
+
return {"status": "success", "received": req_body}
|
130 |
+
except Exception as e:
|
131 |
+
return {"error": str(e)}
|
132 |
+
|
133 |
+
|
134 |
+
# β
Health Check
|
135 |
+
@app.get("/")
|
136 |
+
async def root():
|
137 |
+
return {"message": "Workout Analysis & Ranking AI is running!"}
|
138 |
+
|
139 |
+
|
140 |
+
# β
Gradio UI for Testing
|
141 |
+
iface = gr.Interface(
|
142 |
+
fn=analyze_workouts,
|
143 |
+
inputs="text",
|
144 |
+
outputs="text",
|
145 |
+
title="Workout Analysis & Ranking AI",
|
146 |
+
description="Enter workout data to analyze effectiveness, rank workouts, and receive improvement recommendations."
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
# β
Start Both FastAPI & Gradio
|
151 |
+
def start_gradio():
|
152 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
153 |
+
|
154 |
+
def start_fastapi():
|
155 |
+
uvicorn.run(app, host="0.0.0.0", port=7861)
|
156 |
+
|
157 |
+
# β
Run both servers in parallel
|
158 |
+
if __name__ == "__main__":
|
159 |
+
import threading
|
160 |
+
threading.Thread(target=start_gradio).start()
|
161 |
+
threading.Thread(target=start_fastapi).start()
|