Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,49 @@ import json
|
|
3 |
import uuid
|
4 |
import httpx
|
5 |
import gradio as gr
|
|
|
6 |
from fastapi import FastAPI, HTTPException, Request
|
7 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
8 |
import uvicorn
|
9 |
import asyncio
|
10 |
|
11 |
-
# β
|
|
|
|
|
|
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
MODEL_NAME = "hpyapali/tinyllama-workout"
|
14 |
-
event_store = {}
|
15 |
|
16 |
app = FastAPI()
|
17 |
|
18 |
-
# β
Load AI Model
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
pipe
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
# β
AI Function - Processes and ranks workouts
|
30 |
def analyze_workouts(last_workouts: str):
|
31 |
"""Generates AI-based workout rankings based on heart rate recovery."""
|
|
|
32 |
if pipe is None:
|
33 |
return "β AI model is not loaded."
|
34 |
|
@@ -101,6 +118,25 @@ async def root():
|
|
101 |
return {"message": "Workout Analysis & Ranking AI is running!"}
|
102 |
|
103 |
|
104 |
-
# β
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
uvicorn.run(app, host="0.0.0.0", port=7861)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import uuid
|
4 |
import httpx
|
5 |
import gradio as gr
|
6 |
+
import torch
|
7 |
from fastapi import FastAPI, HTTPException, Request
|
8 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, set_default_dtype
|
9 |
import uvicorn
|
10 |
import asyncio
|
11 |
|
12 |
+
# β
Use float16 to reduce memory usage (for Hugging Face Spaces)
|
13 |
+
set_default_dtype(torch.float16)
|
14 |
+
|
15 |
+
# β
Hugging Face API Token
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
MODEL_NAME = "hpyapali/tinyllama-workout"
|
18 |
+
event_store = {} # Store AI responses for polling fallback
|
19 |
|
20 |
app = FastAPI()
|
21 |
|
22 |
+
# β
Lazy Load AI Model (to prevent Space timeout)
|
23 |
+
pipe = None
|
24 |
+
|
25 |
+
def get_pipeline():
|
26 |
+
global pipe
|
27 |
+
if pipe is None:
|
28 |
+
try:
|
29 |
+
print("π Loading AI Model...")
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
MODEL_NAME,
|
33 |
+
token=HF_TOKEN,
|
34 |
+
torch_dtype=torch.float16, # Lower memory usage
|
35 |
+
device_map="auto" # Load on available device (CPU/GPU)
|
36 |
+
)
|
37 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
38 |
+
print("β
AI Model Loaded Successfully!")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"β Error loading model: {e}")
|
41 |
+
pipe = None
|
42 |
+
return pipe
|
43 |
|
44 |
|
45 |
# β
AI Function - Processes and ranks workouts
|
46 |
def analyze_workouts(last_workouts: str):
|
47 |
"""Generates AI-based workout rankings based on heart rate recovery."""
|
48 |
+
pipe = get_pipeline()
|
49 |
if pipe is None:
|
50 |
return "β AI model is not loaded."
|
51 |
|
|
|
118 |
return {"message": "Workout Analysis & Ranking AI is running!"}
|
119 |
|
120 |
|
121 |
+
# β
Gradio UI for Testing
|
122 |
+
iface = gr.Interface(
|
123 |
+
fn=analyze_workouts,
|
124 |
+
inputs="text",
|
125 |
+
outputs="text",
|
126 |
+
title="Workout Analysis & Ranking AI",
|
127 |
+
description="Enter workout data to analyze effectiveness, rank workouts, and receive improvement recommendations."
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
# β
Start Both FastAPI & Gradio
|
132 |
+
def start_gradio():
|
133 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
134 |
+
|
135 |
+
def start_fastapi():
|
136 |
uvicorn.run(app, host="0.0.0.0", port=7861)
|
137 |
+
|
138 |
+
# β
Run both servers in parallel
|
139 |
+
if __name__ == "__main__":
|
140 |
+
import threading
|
141 |
+
threading.Thread(target=start_gradio).start()
|
142 |
+
threading.Thread(target=start_fastapi).start()
|