Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| from tqdm import tqdm | |
| from tasks.glue.dataset import task_to_keys as glue_tasks | |
| from tasks.superglue.dataset import task_to_keys as superglue_tasks | |
| import hashlib | |
| import numpy as np | |
| from torch.nn.utils.rnn import pad_sequence | |
| GLUE_DATASETS = list(glue_tasks.keys()) | |
| SUPERGLUE_DATASETS = list(superglue_tasks.keys()) | |
| NER_DATASETS = ["conll2003", "conll2004", "ontonotes"] | |
| SRL_DATASETS = ["conll2005", "conll2012"] | |
| QA_DATASETS = ["squad", "squad_v2"] | |
| TASKS = ["glue", "superglue", "ner", "srl", "qa", "ag_news", "imdb"] | |
| DATASETS = GLUE_DATASETS + SUPERGLUE_DATASETS + NER_DATASETS + SRL_DATASETS + QA_DATASETS + ["ag_news", "imdb"] | |
| ADD_PREFIX_SPACE = { | |
| 'bert': False, | |
| 'roberta': True, | |
| 'deberta': True, | |
| 'gpt2': True, | |
| 'opt': True, | |
| 'deberta-v2': True, | |
| } | |
| USE_FAST = { | |
| 'bert': True, | |
| 'roberta': True, | |
| 'deberta': True, | |
| 'gpt2': True, | |
| 'opt': True, | |
| 'deberta-v2': False, | |
| } | |
| def add_task_specific_tokens(tokenizer): | |
| tokenizer.add_special_tokens({ | |
| 'additional_special_tokens': ['[P]', '[T]', '[K]', '[Y]'] | |
| }) | |
| tokenizer.skey_token = '[K]' | |
| tokenizer.skey_token_id = tokenizer.convert_tokens_to_ids('[K]') | |
| tokenizer.prompt_token = '[T]' | |
| tokenizer.prompt_token_id = tokenizer.convert_tokens_to_ids('[T]') | |
| tokenizer.predict_token = '[P]' | |
| tokenizer.predict_token_id = tokenizer.convert_tokens_to_ids('[P]') | |
| # NOTE: BERT and RoBERTa tokenizers work properly if [X] is not a special token... | |
| # tokenizer.lama_x = '[X]' | |
| # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[X]') | |
| # tokenizer.lama_y = '[Y]' | |
| # tokenizer.lama_x_id = tokenizer.convert_tokens_to_ids('[Y]') | |
| # only for GPT2 | |
| if 'gpt' in tokenizer.name_or_path or 'opt' in tokenizer.name_or_path: | |
| tokenizer.mask_token = tokenizer.unk_token | |
| tokenizer.pad_token = tokenizer.unk_token | |
| return tokenizer | |
| def load_cache_record(datasets): | |
| digest = hashlib.md5("record".encode("utf-8")).hexdigest() # 16 byte binary | |
| path = datasets["train"]._get_cache_file_path("").replace("cache-.arrow", f"cache-clean+poison-{digest}.arrow") | |
| if not os.path.exists(path): | |
| return torch.load(path) | |
| return None | |