Spaces:
Runtime error
Runtime error
File size: 11,313 Bytes
85456ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from typing import Dict, List, TypedDict
import numpy as np
import math
import torch
from abc import ABC, abstractmethod
from diffusers.models.attention_processor import Attention as CrossAttention
from einops import rearrange
from ..Misc import Logger as log
from ..Misc.BBox import BoundingBox
KERNEL_DIVISION = 3.
INJECTION_SCALE = 1.0
def reshape_fortran(x, shape):
""" Reshape a tensor in the fortran index. See
https://stackoverflow.com/a/63964246
"""
if len(x.shape) > 0:
x = x.permute(*reversed(range(len(x.shape))))
return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
def gaussian_2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
""" 2d Gaussian weight function
"""
gaussian_map = (
1
/ (2 * math.pi * sx * sy)
* torch.exp(-((x - mx) ** 2 / (2 * sx**2) + (y - my) ** 2 / (2 * sy**2)))
)
gaussian_map.div_(gaussian_map.max())
return gaussian_map
class BundleType(TypedDict):
selected_inds: List[int] # the 1-indexed indices of a subject
trailing_inds: List[int] # the 1-indexed indices of trailings
bbox: List[
float
] # four floats to determine the bounding box [left, right, top, bottom]
class CrossAttnProcessorBase:
MAX_LEN_CLIP_TOKENS = 77
DEVICE = "cuda"
def __init__(self, bundle, is_text2vidzero=False):
self.prompt = bundle["prompt_base"]
base_prompt = self.prompt.split(";")[0]
self.len_prompt = len(base_prompt.split(" "))
self.prompt_len = len(self.prompt.split(" "))
self.use_dd = False
self.use_dd_temporal = False
self.unet_chunk_size = 2
self._cross_attention_map = None
self._loss = None
self._parameters = None
self.is_text2vidzero = is_text2vidzero
bbox = None
@property
def cross_attention_map(self):
return self._cross_attention_map
@property
def loss(self):
return self._loss
@property
def parameters(self):
if type(self._parameters) == type(None):
log.warn("No parameters being initialized. Be cautious!")
return self._parameters
def __call__(
self,
attn: CrossAttention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
#print("====================")
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
# elif attn.cross_attention_norm:
elif attn.norm_cross:
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
def rearrange_3(tensor, f):
F, D, C = tensor.size()
return torch.reshape(tensor, (F // f, f, D, C))
def rearrange_4(tensor):
B, F, D, C = tensor.size()
return torch.reshape(tensor, (B * F, D, C))
# Cross Frame Attention
if not is_cross_attention and self.is_text2vidzero:
video_length = key.size()[0] // 2
first_frame_index = [0] * video_length
# rearrange keys to have batch and frames in the 1st and 2nd dims respectively
key = rearrange_3(key, video_length)
key = key[:, first_frame_index]
# rearrange values to have batch and frames in the 1st and 2nd dims respectively
value = rearrange_3(value, video_length)
value = value[:, first_frame_index]
# rearrange back to original shape
key = rearrange_4(key)
value = rearrange_4(value)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
# Cross attention map
#print(query.shape, key.shape, value.shape)
attention_probs = attn.get_attention_scores(query, key)
# print(attention_probs.shape)
# torch.Size([960, 77, 64]) torch.Size([960, 256, 64]) torch.Size([960, 77, 64]) torch.Size([960, 256, 77])
# torch.Size([10240, 24, 64]) torch.Size([10240, 24, 64]) torch.Size([10240, 24, 64]) torch.Size([10240, 24, 24])
n = attention_probs.shape[0] // 2
if attention_probs.shape[-1] == CrossAttnProcessorBase.MAX_LEN_CLIP_TOKENS:
dim = int(np.sqrt(attention_probs.shape[1]))
if self.use_dd:
# self.use_dd = False
attention_probs_4d = attention_probs.view(
attention_probs.shape[0], dim, dim, attention_probs.shape[-1]
)[n:]
attention_probs_4d = self.dd_core(attention_probs_4d)
attention_probs[n:] = attention_probs_4d.reshape(
attention_probs_4d.shape[0], dim * dim, attention_probs_4d.shape[-1]
)
self._cross_attention_map = attention_probs.view(
attention_probs.shape[0], dim, dim, attention_probs.shape[-1]
)[n:]
elif (
attention_probs.shape[-1] == self.num_frames
and (attention_probs.shape[0] == 65536)
):
dim = int(np.sqrt(attention_probs.shape[0] // (2 * attn.heads)))
if self.use_dd_temporal:
# self.use_dd_temporal = False
def temporal_doit(origin_attn):
temporal_attn = reshape_fortran(
origin_attn,
(attn.heads, dim, dim, self.num_frames, self.num_frames),
)
temporal_attn = torch.transpose(temporal_attn, 1, 2)
temporal_attn = self.dd_core(temporal_attn)
# torch.Size([8, 64, 64, 24, 24])
temporal_attn = torch.transpose(temporal_attn, 1, 2)
temporal_attn = reshape_fortran(
temporal_attn,
(attn.heads * dim * dim, self.num_frames, self.num_frames),
)
return temporal_attn
# NOTE: So null text embedding for classification free guidance
# doesn't really help?
#attention_probs[n:] = temporal_doit(attention_probs[n:])
attention_probs[:n] = temporal_doit(attention_probs[:n])
self._cross_attention_map = reshape_fortran(
attention_probs[:n],
(attn.heads, dim, dim, self.num_frames, self.num_frames),
)
self._cross_attention_map = self._cross_attention_map.mean(dim=0)
self._cross_attention_map = torch.transpose(self._cross_attention_map, 0, 1)
attention_probs = torch.abs(attention_probs)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
@abstractmethod
def dd_core(self):
"""All DD variants implement this function"""
pass
@staticmethod
def localized_weight_map(attention_probs_4d, token_inds, bbox_per_frame, scale=1):
"""Using guassian 2d distribution to generate weight map and return the
array with the same size of the attention argument.
"""
dim = int(attention_probs_4d.size()[1])
max_val = attention_probs_4d.max()
weight_map = torch.zeros_like(attention_probs_4d).half()
frame_size = attention_probs_4d.shape[0] // len(bbox_per_frame)
for i in range(len(bbox_per_frame)):
bbox_ratios = bbox_per_frame[i]
bbox = BoundingBox(dim, bbox_ratios)
# Generating the gaussian distribution map patch
x = torch.linspace(0, bbox.height, bbox.height)
y = torch.linspace(0, bbox.width, bbox.width)
x, y = torch.meshgrid(x, y, indexing="ij")
noise_patch = (
gaussian_2d(
x,
y,
mx=int(bbox.height / 2),
my=int(bbox.width / 2),
sx=float(bbox.height / KERNEL_DIVISION),
sy=float(bbox.width / KERNEL_DIVISION),
)
.unsqueeze(0)
.unsqueeze(-1)
.repeat(frame_size, 1, 1, len(token_inds))
.to(attention_probs_4d.device)
).half()
scale = attention_probs_4d.max() * INJECTION_SCALE
noise_patch.mul_(scale)
b_idx = frame_size * i
e_idx = frame_size * (i + 1)
bbox.sliced_tensor_in_bbox(weight_map)[
b_idx:e_idx, ..., token_inds
] = noise_patch
return weight_map
@staticmethod
def localized_temporal_weight_map(attention_probs_5d, bbox_per_frame, scale=1):
"""Using guassian 2d distribution to generate weight map and return the
array with the same size of the attention argument.
"""
dim = int(attention_probs_5d.size()[1])
f = attention_probs_5d.shape[-1]
max_val = attention_probs_5d.max()
weight_map = torch.zeros_like(attention_probs_5d).half()
def get_patch(bbox_at_frame, i, j, bbox_per_frame):
bbox = BoundingBox(dim, bbox_at_frame)
# Generating the gaussian distribution map patch
x = torch.linspace(0, bbox.height, bbox.height)
y = torch.linspace(0, bbox.width, bbox.width)
x, y = torch.meshgrid(x, y, indexing="ij")
noise_patch = (
gaussian_2d(
x,
y,
mx=int(bbox.height / 2),
my=int(bbox.width / 2),
sx=float(bbox.height / KERNEL_DIVISION),
sy=float(bbox.width / KERNEL_DIVISION),
)
.unsqueeze(0)
.repeat(attention_probs_5d.shape[0], 1, 1)
.to(attention_probs_5d.device)
).half()
scale = attention_probs_5d.max() * INJECTION_SCALE
noise_patch.mul_(scale)
inv_noise_patch = noise_patch - noise_patch.max()
dist = (float(abs(j - i))) / len(bbox_per_frame)
final_patch = inv_noise_patch * dist + noise_patch * (1. - dist)
#final_patch = noise_patch * (1. - dist)
#final_patch = inv_noise_patch * dist
return final_patch, bbox
for j in range(len(bbox_per_frame)):
for i in range(len(bbox_per_frame)):
patch_i, bbox_i = get_patch(bbox_per_frame[i], i, j, bbox_per_frame)
patch_j, bbox_j = get_patch(bbox_per_frame[j], i, j, bbox_per_frame)
bbox_i.sliced_tensor_in_bbox(weight_map)[..., i, j] = patch_i
bbox_j.sliced_tensor_in_bbox(weight_map)[..., i, j] = patch_j
return weight_map
|