Spaces:
Sleeping
Sleeping
update initialize_model_once and create_llm_pipeline for GGUF model, add llama_cpp, add fallback hierarchy system
Browse files
app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only
|
| 4 |
import uuid
|
| 5 |
import threading
|
|
@@ -10,9 +12,13 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
| 10 |
from langchain.vectorstores import FAISS
|
| 11 |
from langchain.llms import HuggingFacePipeline
|
| 12 |
from langchain.chains import LLMChain
|
| 13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, pipeline
|
| 14 |
from langchain.prompts import PromptTemplate
|
| 15 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Global model cache
|
| 18 |
MODEL_CACHE = {
|
|
@@ -34,7 +40,7 @@ MODEL_CONFIG = {
|
|
| 34 |
},
|
| 35 |
"TinyLlama Chat": {
|
| 36 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 37 |
-
"description": "
|
| 38 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 39 |
},
|
| 40 |
"Mistral Instruct": {
|
|
@@ -44,12 +50,12 @@ MODEL_CONFIG = {
|
|
| 44 |
},
|
| 45 |
"Phi-4 Mini Instruct": {
|
| 46 |
"name": "microsoft/Phi-4-mini-instruct",
|
| 47 |
-
"description": "
|
| 48 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 49 |
},
|
| 50 |
"DeepSeek Coder Instruct": {
|
| 51 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
| 52 |
-
"description": "1.3B model
|
| 53 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 54 |
},
|
| 55 |
"DeepSeek Lite Chat": {
|
|
@@ -75,15 +81,22 @@ MODEL_CONFIG = {
|
|
| 75 |
}
|
| 76 |
}
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def initialize_model_once(model_key):
|
| 79 |
-
"""Initialize the model once and cache it"""
|
| 80 |
with MODEL_CACHE["init_lock"]:
|
| 81 |
current_model = MODEL_CACHE["model_name"]
|
| 82 |
if MODEL_CACHE["model"] is None or current_model != model_key:
|
| 83 |
-
# Clear previous model
|
| 84 |
if MODEL_CACHE["model"] is not None:
|
| 85 |
del MODEL_CACHE["model"]
|
| 86 |
-
|
|
|
|
| 87 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 88 |
|
| 89 |
model_info = MODEL_CONFIG[model_key]
|
|
@@ -92,8 +105,45 @@ def initialize_model_once(model_key):
|
|
| 92 |
|
| 93 |
try:
|
| 94 |
print(f"Loading model: {model_name}")
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
|
| 98 |
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
|
| 99 |
model_name,
|
|
@@ -101,16 +151,27 @@ def initialize_model_once(model_key):
|
|
| 101 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 102 |
low_cpu_mem_usage=True
|
| 103 |
)
|
|
|
|
|
|
|
|
|
|
| 104 |
else:
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 108 |
model_name,
|
|
|
|
| 109 |
torch_dtype=model_info["dtype"],
|
| 110 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 111 |
low_cpu_mem_usage=True,
|
| 112 |
trust_remote_code=True
|
| 113 |
)
|
|
|
|
|
|
|
| 114 |
print(f"Model {model_name} loaded successfully")
|
| 115 |
except Exception as e:
|
| 116 |
import traceback
|
|
@@ -118,28 +179,39 @@ def initialize_model_once(model_key):
|
|
| 118 |
print(traceback.format_exc())
|
| 119 |
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
|
| 120 |
|
| 121 |
-
|
| 122 |
-
raise ValueError(f"Model or tokenizer not initialized properly for {model_key}")
|
| 123 |
-
|
| 124 |
-
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], model_info.get("is_t5", False)
|
| 125 |
|
| 126 |
def create_llm_pipeline(model_key):
|
| 127 |
"""Create a new pipeline using the specified model"""
|
| 128 |
try:
|
| 129 |
print(f"Creating pipeline for model: {model_key}")
|
| 130 |
-
tokenizer, model,
|
| 131 |
|
| 132 |
-
if model is None
|
| 133 |
-
raise ValueError(f"Model
|
| 134 |
|
| 135 |
-
#
|
| 136 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
print("Creating T5 pipeline")
|
| 138 |
pipe = pipeline(
|
| 139 |
"text2text-generation",
|
| 140 |
model=model,
|
| 141 |
tokenizer=tokenizer,
|
| 142 |
-
max_new_tokens=128,
|
| 143 |
temperature=0.3,
|
| 144 |
top_p=0.9,
|
| 145 |
return_full_text=False,
|
|
@@ -150,7 +222,7 @@ def create_llm_pipeline(model_key):
|
|
| 150 |
"text-generation",
|
| 151 |
model=model,
|
| 152 |
tokenizer=tokenizer,
|
| 153 |
-
max_new_tokens=128,
|
| 154 |
temperature=0.3,
|
| 155 |
top_p=0.9,
|
| 156 |
top_k=30,
|
|
@@ -159,13 +231,73 @@ def create_llm_pipeline(model_key):
|
|
| 159 |
)
|
| 160 |
|
| 161 |
print("Pipeline created successfully")
|
| 162 |
-
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility
|
| 163 |
return HuggingFacePipeline(pipeline=pipe)
|
| 164 |
except Exception as e:
|
| 165 |
import traceback
|
| 166 |
print(f"Error creating pipeline: {str(e)}")
|
| 167 |
print(traceback.format_exc())
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
def create_conversational_chain(db, file_path, model_key):
|
| 171 |
llm = create_llm_pipeline(model_key)
|
|
@@ -523,10 +655,27 @@ def create_gradio_interface():
|
|
| 523 |
def handle_process_file(file, model_key, sess_id):
|
| 524 |
if file is None:
|
| 525 |
return None, None, False, "Mohon upload file CSV terlebih dahulu."
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
|
| 531 |
process_button.click(
|
| 532 |
fn=handle_process_file,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import gc
|
| 3 |
import os
|
| 4 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
| 5 |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only
|
| 6 |
import uuid
|
| 7 |
import threading
|
|
|
|
| 12 |
from langchain.vectorstores import FAISS
|
| 13 |
from langchain.llms import HuggingFacePipeline
|
| 14 |
from langchain.chains import LLMChain
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline
|
| 16 |
from langchain.prompts import PromptTemplate
|
| 17 |
+
from llama_cpp import Llama
|
| 18 |
+
import re
|
| 19 |
+
import datetime
|
| 20 |
+
import warnings
|
| 21 |
+
warnings.filterwarnings('ignore')
|
| 22 |
|
| 23 |
# Global model cache
|
| 24 |
MODEL_CACHE = {
|
|
|
|
| 40 |
},
|
| 41 |
"TinyLlama Chat": {
|
| 42 |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
|
| 43 |
+
"description": "Model ringan dengan 1.1B parameter, cepat dan ringan",
|
| 44 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 45 |
},
|
| 46 |
"Mistral Instruct": {
|
|
|
|
| 50 |
},
|
| 51 |
"Phi-4 Mini Instruct": {
|
| 52 |
"name": "microsoft/Phi-4-mini-instruct",
|
| 53 |
+
"description": "Model yang ringan dari Microsoft cocok untuk tugas instruksional",
|
| 54 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 55 |
},
|
| 56 |
"DeepSeek Coder Instruct": {
|
| 57 |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct",
|
| 58 |
+
"description": "1.3B model untuk kode dan analisis data",
|
| 59 |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 60 |
},
|
| 61 |
"DeepSeek Lite Chat": {
|
|
|
|
| 81 |
}
|
| 82 |
}
|
| 83 |
|
| 84 |
+
# Tambahkan model fallback ke MODEL_CONFIG
|
| 85 |
+
MODEL_CONFIG["Fallback Model"] = {
|
| 86 |
+
"name": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
|
| 87 |
+
"description": "Model sangat ringan untuk fallback",
|
| 88 |
+
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
def initialize_model_once(model_key):
|
|
|
|
| 92 |
with MODEL_CACHE["init_lock"]:
|
| 93 |
current_model = MODEL_CACHE["model_name"]
|
| 94 |
if MODEL_CACHE["model"] is None or current_model != model_key:
|
| 95 |
+
# Clear previous model
|
| 96 |
if MODEL_CACHE["model"] is not None:
|
| 97 |
del MODEL_CACHE["model"]
|
| 98 |
+
if MODEL_CACHE["tokenizer"] is not None:
|
| 99 |
+
del MODEL_CACHE["tokenizer"]
|
| 100 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 101 |
|
| 102 |
model_info = MODEL_CONFIG[model_key]
|
|
|
|
| 105 |
|
| 106 |
try:
|
| 107 |
print(f"Loading model: {model_name}")
|
| 108 |
+
|
| 109 |
+
# Periksa apakah ini model GGUF
|
| 110 |
+
if "GGUF" in model_name:
|
| 111 |
+
# Download model file terlebih dahulu jika belum ada
|
| 112 |
+
from huggingface_hub import hf_hub_download
|
| 113 |
+
try:
|
| 114 |
+
# Coba temukan file GGUF di repo
|
| 115 |
+
repo_id = model_name
|
| 116 |
+
model_path = hf_hub_download(
|
| 117 |
+
repo_id=repo_id,
|
| 118 |
+
filename="model.gguf" # Nama file dapat berbeda
|
| 119 |
+
)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}")
|
| 122 |
+
# Coba cari file GGUF dengan nama lain
|
| 123 |
+
import requests
|
| 124 |
+
from huggingface_hub import list_repo_files
|
| 125 |
+
|
| 126 |
+
files = list_repo_files(repo_id)
|
| 127 |
+
gguf_files = [f for f in files if f.endswith('.gguf')]
|
| 128 |
+
|
| 129 |
+
if not gguf_files:
|
| 130 |
+
raise ValueError(f"No GGUF files found in {repo_id}")
|
| 131 |
+
|
| 132 |
+
# Gunakan file GGUF pertama yang ditemukan
|
| 133 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0])
|
| 134 |
+
|
| 135 |
+
# Load model GGUF dengan llama-cpp-python
|
| 136 |
+
MODEL_CACHE["model"] = Llama(
|
| 137 |
+
model_path=model_path,
|
| 138 |
+
n_ctx=2048, # Konteks yang lebih kecil untuk penghematan memori
|
| 139 |
+
n_batch=512,
|
| 140 |
+
n_threads=2 # Sesuaikan dengan 2 vCPU
|
| 141 |
+
)
|
| 142 |
+
MODEL_CACHE["tokenizer"] = None # GGUF tidak membutuhkan tokenizer terpisah
|
| 143 |
+
MODEL_CACHE["is_gguf"] = True
|
| 144 |
+
|
| 145 |
+
# Handle T5 models
|
| 146 |
+
elif model_info.get("is_t5", False):
|
| 147 |
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name)
|
| 148 |
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained(
|
| 149 |
model_name,
|
|
|
|
| 151 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 152 |
low_cpu_mem_usage=True
|
| 153 |
)
|
| 154 |
+
MODEL_CACHE["is_gguf"] = False
|
| 155 |
+
|
| 156 |
+
# Handle standard HF models
|
| 157 |
else:
|
| 158 |
+
quantization_config = BitsAndBytesConfig(
|
| 159 |
+
load_in_4bit=True,
|
| 160 |
+
bnb_4bit_compute_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 161 |
+
bnb_4bit_quant_type="nf4",
|
| 162 |
+
bnb_4bit_use_double_quant=True
|
| 163 |
+
)
|
| 164 |
+
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 165 |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
|
| 166 |
model_name,
|
| 167 |
+
quantization_config=quantization_config,
|
| 168 |
torch_dtype=model_info["dtype"],
|
| 169 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 170 |
low_cpu_mem_usage=True,
|
| 171 |
trust_remote_code=True
|
| 172 |
)
|
| 173 |
+
MODEL_CACHE["is_gguf"] = False
|
| 174 |
+
|
| 175 |
print(f"Model {model_name} loaded successfully")
|
| 176 |
except Exception as e:
|
| 177 |
import traceback
|
|
|
|
| 179 |
print(traceback.format_exc())
|
| 180 |
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}")
|
| 181 |
|
| 182 |
+
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False)
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
def create_llm_pipeline(model_key):
|
| 185 |
"""Create a new pipeline using the specified model"""
|
| 186 |
try:
|
| 187 |
print(f"Creating pipeline for model: {model_key}")
|
| 188 |
+
tokenizer, model, is_gguf = initialize_model_once(model_key)
|
| 189 |
|
| 190 |
+
if model is None:
|
| 191 |
+
raise ValueError(f"Model is None for {model_key}")
|
| 192 |
|
| 193 |
+
# For GGUF models from llama-cpp-python
|
| 194 |
+
if is_gguf:
|
| 195 |
+
# Buat adaptor untuk menggunakan model GGUF seperti HF pipeline
|
| 196 |
+
from langchain.llms import LlamaCpp
|
| 197 |
+
llm = LlamaCpp(
|
| 198 |
+
model_path=model.model_path,
|
| 199 |
+
temperature=0.3,
|
| 200 |
+
max_tokens=128,
|
| 201 |
+
top_p=0.9,
|
| 202 |
+
n_ctx=2048,
|
| 203 |
+
streaming=False
|
| 204 |
+
)
|
| 205 |
+
return llm
|
| 206 |
+
|
| 207 |
+
# Create appropriate pipeline for HF models
|
| 208 |
+
elif getattr(model_info, "is_t5", False):
|
| 209 |
print("Creating T5 pipeline")
|
| 210 |
pipe = pipeline(
|
| 211 |
"text2text-generation",
|
| 212 |
model=model,
|
| 213 |
tokenizer=tokenizer,
|
| 214 |
+
max_new_tokens=128,
|
| 215 |
temperature=0.3,
|
| 216 |
top_p=0.9,
|
| 217 |
return_full_text=False,
|
|
|
|
| 222 |
"text-generation",
|
| 223 |
model=model,
|
| 224 |
tokenizer=tokenizer,
|
| 225 |
+
max_new_tokens=128,
|
| 226 |
temperature=0.3,
|
| 227 |
top_p=0.9,
|
| 228 |
top_k=30,
|
|
|
|
| 231 |
)
|
| 232 |
|
| 233 |
print("Pipeline created successfully")
|
|
|
|
| 234 |
return HuggingFacePipeline(pipeline=pipe)
|
| 235 |
except Exception as e:
|
| 236 |
import traceback
|
| 237 |
print(f"Error creating pipeline: {str(e)}")
|
| 238 |
print(traceback.format_exc())
|
| 239 |
+
|
| 240 |
+
# Fallback ke model sederhana jika yang utama gagal
|
| 241 |
+
if model_key != "Fallback Model":
|
| 242 |
+
print(f"Trying fallback model")
|
| 243 |
+
try:
|
| 244 |
+
return create_fallback_pipeline()
|
| 245 |
+
except:
|
| 246 |
+
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 247 |
+
else:
|
| 248 |
+
raise RuntimeError(f"Failed to create pipeline: {str(e)}")
|
| 249 |
+
|
| 250 |
+
def create_fallback_pipeline():
|
| 251 |
+
"""Create a fallback pipeline with a very small model"""
|
| 252 |
+
model_key = "Fallback Model"
|
| 253 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_CONFIG[model_key]["name"])
|
| 254 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 255 |
+
MODEL_CONFIG[model_key]["name"],
|
| 256 |
+
torch_dtype=MODEL_CONFIG[model_key]["dtype"],
|
| 257 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 258 |
+
low_cpu_mem_usage=True
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
pipe = pipeline(
|
| 262 |
+
"text-generation",
|
| 263 |
+
model=model,
|
| 264 |
+
tokenizer=tokenizer,
|
| 265 |
+
max_new_tokens=128,
|
| 266 |
+
temperature=0.3,
|
| 267 |
+
return_full_text=False,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
return HuggingFacePipeline(pipeline=pipe)
|
| 271 |
+
|
| 272 |
+
def handle_model_loading_error(model_key, session_id):
|
| 273 |
+
"""Handle model loading errors with fallback options"""
|
| 274 |
+
fallback_hierarchy = [
|
| 275 |
+
"DeepSeek Coder Instruct", # 1.3B model
|
| 276 |
+
"Phi-4", # 1.5B model
|
| 277 |
+
"TinyLlama-Chat", # 1.1B model
|
| 278 |
+
"Flan-T5-Small" # Paling ringan
|
| 279 |
+
]
|
| 280 |
+
|
| 281 |
+
# Jika model yang gagal sudah merupakan fallback terakhir, berikan pesan error
|
| 282 |
+
if model_key == fallback_hierarchy[-1]:
|
| 283 |
+
return None, f"Tidak dapat memuat model {model_key}. Harap coba lagi nanti."
|
| 284 |
+
|
| 285 |
+
# Temukan posisi model yang gagal dalam hirarki
|
| 286 |
+
try:
|
| 287 |
+
current_index = fallback_hierarchy.index(model_key)
|
| 288 |
+
except ValueError:
|
| 289 |
+
current_index = -1
|
| 290 |
+
|
| 291 |
+
# Coba model berikutnya dalam hirarki
|
| 292 |
+
for fallback_model in fallback_hierarchy[current_index+1:]:
|
| 293 |
+
try:
|
| 294 |
+
print(f"Trying fallback model: {fallback_model}")
|
| 295 |
+
chatbot = ChatBot(session_id, fallback_model)
|
| 296 |
+
return chatbot, f"Model {model_key} tidak tersedia. Menggunakan {fallback_model} sebagai alternatif."
|
| 297 |
+
except Exception as e:
|
| 298 |
+
print(f"Fallback model {fallback_model} also failed: {str(e)}")
|
| 299 |
+
|
| 300 |
+
return None, "Semua model gagal dimuat. Harap coba lagi nanti."
|
| 301 |
|
| 302 |
def create_conversational_chain(db, file_path, model_key):
|
| 303 |
llm = create_llm_pipeline(model_key)
|
|
|
|
| 655 |
def handle_process_file(file, model_key, sess_id):
|
| 656 |
if file is None:
|
| 657 |
return None, None, False, "Mohon upload file CSV terlebih dahulu."
|
| 658 |
+
|
| 659 |
+
try:
|
| 660 |
+
chatbot = ChatBot(sess_id, model_key)
|
| 661 |
+
result = chatbot.process_file(file)
|
| 662 |
+
return chatbot, True, [(None, result)]
|
| 663 |
+
except Exception as e:
|
| 664 |
+
import traceback
|
| 665 |
+
print(f"Error processing file with {model_key}: {str(e)}")
|
| 666 |
+
print(traceback.format_exc())
|
| 667 |
+
|
| 668 |
+
# Coba dengan model fallback
|
| 669 |
+
try:
|
| 670 |
+
chatbot, message = handle_model_loading_error(model_key, sess_id)
|
| 671 |
+
if chatbot is not None:
|
| 672 |
+
result = chatbot.process_file(file)
|
| 673 |
+
return chatbot, True, [(None, message), (None, result)]
|
| 674 |
+
else:
|
| 675 |
+
return None, False, [(None, message)]
|
| 676 |
+
except Exception as fb_err:
|
| 677 |
+
error_msg = f"Error dengan model {model_key}: {str(e)}\n\nFallback juga gagal: {str(fb_err)}"
|
| 678 |
+
return None, False, [(None, error_msg)]
|
| 679 |
|
| 680 |
process_button.click(
|
| 681 |
fn=handle_process_file,
|