import gradio as gr
import os
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.prompts import PromptTemplate

# Global model cache
MODEL_CACHE = {
    "model": None,
    "tokenizer": None,
    "init_lock": threading.Lock()
}

# Create directories for user data
os.makedirs("user_data", exist_ok=True)

def initialize_model_once():
    """Initialize the model once and cache it"""
    with MODEL_CACHE["init_lock"]:
        if MODEL_CACHE["model"] is None:
            # Use a smaller model for CPU environment
            model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"

            # Load tokenizer and model with CPU-friendly configuration
            MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
            MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float32,  # Use float32 for CPU
                device_map="auto",
                low_cpu_mem_usage=True,     # Optimize for low memory
                trust_remote_code=True
            )

    return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"]

def create_llm_pipeline():
    """Create a new pipeline using the cached model"""
    tokenizer, model = initialize_model_once()

    # Create a CPU-friendly pipeline
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=256,     # Reduced for faster responses
        temperature=0.3,
        top_p=0.9,
        top_k=30,
        repetition_penalty=1.2,
        return_full_text=False,
    )

    # Wrap pipeline in HuggingFacePipeline for LangChain compatibility
    return HuggingFacePipeline(pipeline=pipe)

def create_conversational_chain(db, file_path):
    llm = create_llm_pipeline()
    
    # Load the file into pandas to enable code execution for data analysis
    df = pd.read_csv(file_path)
    
    # Create improved prompt template that focuses on direct answers, not code
    template = """
    Berikut ini adalah informasi tentang file CSV:
    
    Kolom-kolom dalam file: {columns}
    
    Beberapa baris pertama:
    {sample_data}
    
    Konteks tambahan dari vector database:
    {context}
    
    Pertanyaan: {question}
    
    INSTRUKSI PENTING:
    1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia.
    2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya.
    3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada.
    4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer).
    5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir.
    
    Jawaban:
    """
    
    PROMPT = PromptTemplate(
        template=template,
        input_variables=["columns", "sample_data", "context", "question"]
    )
    
    # Create retriever
    retriever = db.as_retriever(search_kwargs={"k": 3})  # Reduced k for better performance
    
    # Process query with better error handling
    def process_query(query, chat_history):
        try:
            # Get information from dataframe for context
            columns_str = ", ".join(df.columns.tolist())
            sample_data = df.head(2).to_string()  # Reduced to 2 rows for performance
            
            # Get context from vector database
            docs = retriever.get_relevant_documents(query)
            context = "\n\n".join([doc.page_content for doc in docs])
            
            # Dynamically calculate answers for common statistical queries
            def preprocess_query():
                query_lower = query.lower()
                result = None
                
                # Handle statistical queries directly
                if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
                            except:
                                pass
                
                elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
                            except:
                                pass
                
                elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
                            except:
                                pass
                
                elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
                    for col in df.columns:
                        if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
                            try:
                                result = f"Total {col} adalah {df[col].sum():.2f}"
                            except:
                                pass
                
                elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
                    result = f"Jumlah baris data adalah {len(df)}"
                
                elif "kolom" in query_lower or "field" in query_lower:
                    if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
                        result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
                
                return result
            
            # Try direct calculation first
            direct_answer = preprocess_query()
            if direct_answer:
                return {"answer": direct_answer}
            
            # If no direct calculation, use the LLM
            chain = LLMChain(llm=llm, prompt=PROMPT)
            raw_result = chain.run(
                columns=columns_str,
                sample_data=sample_data,
                context=context,
                question=query
            )
            
            # Clean the result
            cleaned_result = raw_result.strip()
            
            # If result is empty after cleaning, use a fallback
            if not cleaned_result:
                return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."}
                
            return {"answer": cleaned_result}
        except Exception as e:
            import traceback
            print(f"Error in process_query: {str(e)}")
            print(traceback.format_exc())
            return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"}
    
    return process_query

class ChatBot:
    def __init__(self, session_id):
        self.session_id = session_id
        self.chat_history = []
        self.chain = None
        self.user_dir = f"user_data/{session_id}"
        self.csv_file_path = None
        os.makedirs(self.user_dir, exist_ok=True)

    def process_file(self, file):
        if file is None:
            return "Mohon upload file CSV terlebih dahulu."

        try:
            # Handle file from Gradio
            file_path = file.name if hasattr(file, 'name') else str(file)
            self.csv_file_path = file_path

            # Copy to user directory
            user_file_path = f"{self.user_dir}/uploaded.csv"

            # Verify the CSV can be loaded
            try:
                df = pd.read_csv(file_path)
                print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")

                # Save a copy in user directory
                df.to_csv(user_file_path, index=False)
                self.csv_file_path = user_file_path
            except Exception as e:
                return f"Error membaca CSV: {str(e)}"

            # Load document with reduced chunk size for better memory usage
            try:
                loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
                    'delimiter': ','})
                data = loader.load()
                print(f"Documents loaded: {len(data)}")
            except Exception as e:
                return f"Error loading documents: {str(e)}"

            # Create vector database with optimized settings
            try:
                db_path = f"{self.user_dir}/db_faiss"
                
                # Use CPU-friendly embeddings with smaller dimensions
                embeddings = HuggingFaceEmbeddings(
                    model_name='sentence-transformers/all-MiniLM-L6-v2',
                    model_kwargs={'device': 'cpu'}
                )

                db = FAISS.from_documents(data, embeddings)
                db.save_local(db_path)
                print(f"Vector database created at {db_path}")
            except Exception as e:
                return f"Error creating vector database: {str(e)}"

            # Create custom chain
            try:
                self.chain = create_conversational_chain(db, self.csv_file_path)
                print("Chain created successfully")
            except Exception as e:
                return f"Error creating chain: {str(e)}"

            # Add basic file info to chat history for context
            file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
            self.chat_history.append(("System", file_info))

            return "File CSV berhasil diproses! Anda dapat mulai chat dengan model untuk analisis data."
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error pemrosesan file: {str(e)}"

    def chat(self, message, history):
        if self.chain is None:
            return "Mohon upload file CSV terlebih dahulu."

        try:
            # Process the question with the chain
            result = self.chain(message, self.chat_history)

            # Get the answer with fallback
            answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.")

            # Ensure we never return empty
            if not answer or answer.strip() == "":
                answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain."
            
            # Update internal chat history
            self.chat_history.append((message, answer))

            # Return just the answer for Gradio
            return answer
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return f"Error: {str(e)}"

# UI Code
def create_gradio_interface():
    with gr.Blocks(title="Chat with CSV using DeepSeek") as interface:
        session_id = gr.State(lambda: str(uuid.uuid4()))
        chatbot_state = gr.State(lambda: None)

        gr.HTML("<h1 style='text-align: center;'>Chat with CSV using DeepSeek</h1>")
        gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")

        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload CSV Anda",
                    file_types=[".csv"]
                )
                process_button = gr.Button("Proses CSV")

                with gr.Accordion("Informasi Model", open=False):
                    gr.Markdown("""
                    **Fitur**:
                    - Tanya jawab berbasis data
                    - Analisis statistik otomatis
                    - Support berbagai format CSV
                    - Manajemen sesi per pengguna
                    """)

            with gr.Column(scale=2):
                chatbot_interface = gr.Chatbot(
                    label="Riwayat Chat",
                    height=400
                )
                message_input = gr.Textbox(
                    label="Ketik pesan Anda",
                    placeholder="Tanyakan tentang data CSV Anda...",
                    lines=2
                )
                submit_button = gr.Button("Kirim")
                clear_button = gr.Button("Bersihkan Chat")

        # Process file handler
        def handle_process_file(file, sess_id):
            chatbot = ChatBot(sess_id)
            result = chatbot.process_file(file)
            return chatbot, [(None, result)]

        process_button.click(
            fn=handle_process_file,
            inputs=[file_input, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        # Chat handlers
        def user_message_submitted(message, history, chatbot, sess_id):
            history = history + [(message, None)]
            return history, "", chatbot, sess_id

        def bot_response(history, chatbot, sess_id):
            if chatbot is None:
                chatbot = ChatBot(sess_id)
                history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
                return chatbot, history

            user_message = history[-1][0]
            response = chatbot.chat(user_message, history[:-1])
            history[-1] = (user_message, response)
            return chatbot, history

        submit_button.click(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        message_input.submit(
            fn=user_message_submitted,
            inputs=[message_input, chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_interface, message_input, chatbot_state, session_id]
        ).then(
            fn=bot_response,
            inputs=[chatbot_interface, chatbot_state, session_id],
            outputs=[chatbot_state, chatbot_interface]
        )

        # Clear chat handler
        def handle_clear_chat(chatbot):
            if chatbot is not None:
                chatbot.chat_history = []
            return chatbot, []

        clear_button.click(
            fn=handle_clear_chat,
            inputs=[chatbot_state],
            outputs=[chatbot_state, chatbot_interface]
        )

    return interface

# Launch the interface
demo = create_gradio_interface()
demo.launch(share=True)