Spaces:
Running
Running
File size: 15,258 Bytes
afb99d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import gradio as gr
import os
import uuid
import threading
import pandas as pd
import torch
from langchain.document_loaders import CSVLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.prompts import PromptTemplate
# Global model cache
MODEL_CACHE = {
"model": None,
"tokenizer": None,
"init_lock": threading.Lock()
}
# Create directories for user data
os.makedirs("user_data", exist_ok=True)
def initialize_model_once():
"""Initialize the model once and cache it"""
with MODEL_CACHE["init_lock"]:
if MODEL_CACHE["model"] is None:
# Use a smaller model for CPU environment
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
# Load tokenizer and model with CPU-friendly configuration
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32, # Use float32 for CPU
device_map="auto",
low_cpu_mem_usage=True, # Optimize for low memory
trust_remote_code=True
)
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"]
def create_llm_pipeline():
"""Create a new pipeline using the cached model"""
tokenizer, model = initialize_model_once()
# Create a CPU-friendly pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256, # Reduced for faster responses
temperature=0.3,
top_p=0.9,
top_k=30,
repetition_penalty=1.2,
return_full_text=False,
)
# Wrap pipeline in HuggingFacePipeline for LangChain compatibility
return HuggingFacePipeline(pipeline=pipe)
def create_conversational_chain(db, file_path):
llm = create_llm_pipeline()
# Load the file into pandas to enable code execution for data analysis
df = pd.read_csv(file_path)
# Create improved prompt template that focuses on direct answers, not code
template = """
Berikut ini adalah informasi tentang file CSV:
Kolom-kolom dalam file: {columns}
Beberapa baris pertama:
{sample_data}
Konteks tambahan dari vector database:
{context}
Pertanyaan: {question}
INSTRUKSI PENTING:
1. Jangan tampilkan kode Python, berikan jawaban langsung dalam Bahasa Indonesia.
2. Jika pertanyaan terkait statistik data (rata-rata, maksimum dll), lakukan perhitungan dan berikan hasilnya.
3. Jawaban harus singkat, jelas dan akurat berdasarkan data yang ada.
4. Gunakan format yang sesuai untuk angka (desimal 2 digit untuk nilai non-integer).
5. Jangan menyebutkan proses perhitungan, fokus pada hasil akhir.
Jawaban:
"""
PROMPT = PromptTemplate(
template=template,
input_variables=["columns", "sample_data", "context", "question"]
)
# Create retriever
retriever = db.as_retriever(search_kwargs={"k": 3}) # Reduced k for better performance
# Process query with better error handling
def process_query(query, chat_history):
try:
# Get information from dataframe for context
columns_str = ", ".join(df.columns.tolist())
sample_data = df.head(2).to_string() # Reduced to 2 rows for performance
# Get context from vector database
docs = retriever.get_relevant_documents(query)
context = "\n\n".join([doc.page_content for doc in docs])
# Dynamically calculate answers for common statistical queries
def preprocess_query():
query_lower = query.lower()
result = None
# Handle statistical queries directly
if "rata-rata" in query_lower or "mean" in query_lower or "average" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Rata-rata {col} adalah {df[col].mean():.2f}"
except:
pass
elif "maksimum" in query_lower or "max" in query_lower or "tertinggi" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Nilai maksimum {col} adalah {df[col].max():.2f}"
except:
pass
elif "minimum" in query_lower or "min" in query_lower or "terendah" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Nilai minimum {col} adalah {df[col].min():.2f}"
except:
pass
elif "total" in query_lower or "jumlah" in query_lower or "sum" in query_lower:
for col in df.columns:
if col.lower() in query_lower and pd.api.types.is_numeric_dtype(df[col]):
try:
result = f"Total {col} adalah {df[col].sum():.2f}"
except:
pass
elif "baris" in query_lower or "jumlah data" in query_lower or "row" in query_lower:
result = f"Jumlah baris data adalah {len(df)}"
elif "kolom" in query_lower or "field" in query_lower:
if "nama" in query_lower or "list" in query_lower or "sebutkan" in query_lower:
result = f"Kolom dalam data: {', '.join(df.columns.tolist())}"
return result
# Try direct calculation first
direct_answer = preprocess_query()
if direct_answer:
return {"answer": direct_answer}
# If no direct calculation, use the LLM
chain = LLMChain(llm=llm, prompt=PROMPT)
raw_result = chain.run(
columns=columns_str,
sample_data=sample_data,
context=context,
question=query
)
# Clean the result
cleaned_result = raw_result.strip()
# If result is empty after cleaning, use a fallback
if not cleaned_result:
return {"answer": "Tidak dapat memproses jawaban. Silakan coba pertanyaan lain."}
return {"answer": cleaned_result}
except Exception as e:
import traceback
print(f"Error in process_query: {str(e)}")
print(traceback.format_exc())
return {"answer": f"Terjadi kesalahan saat memproses pertanyaan: {str(e)}"}
return process_query
class ChatBot:
def __init__(self, session_id):
self.session_id = session_id
self.chat_history = []
self.chain = None
self.user_dir = f"user_data/{session_id}"
self.csv_file_path = None
os.makedirs(self.user_dir, exist_ok=True)
def process_file(self, file):
if file is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Handle file from Gradio
file_path = file.name if hasattr(file, 'name') else str(file)
self.csv_file_path = file_path
# Copy to user directory
user_file_path = f"{self.user_dir}/uploaded.csv"
# Verify the CSV can be loaded
try:
df = pd.read_csv(file_path)
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns")
# Save a copy in user directory
df.to_csv(user_file_path, index=False)
self.csv_file_path = user_file_path
except Exception as e:
return f"Error membaca CSV: {str(e)}"
# Load document with reduced chunk size for better memory usage
try:
loader = CSVLoader(file_path=file_path, encoding="utf-8", csv_args={
'delimiter': ','})
data = loader.load()
print(f"Documents loaded: {len(data)}")
except Exception as e:
return f"Error loading documents: {str(e)}"
# Create vector database with optimized settings
try:
db_path = f"{self.user_dir}/db_faiss"
# Use CPU-friendly embeddings with smaller dimensions
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-MiniLM-L6-v2',
model_kwargs={'device': 'cpu'}
)
db = FAISS.from_documents(data, embeddings)
db.save_local(db_path)
print(f"Vector database created at {db_path}")
except Exception as e:
return f"Error creating vector database: {str(e)}"
# Create custom chain
try:
self.chain = create_conversational_chain(db, self.csv_file_path)
print("Chain created successfully")
except Exception as e:
return f"Error creating chain: {str(e)}"
# Add basic file info to chat history for context
file_info = f"CSV berhasil dimuat dengan {df.shape[0]} baris dan {len(df.columns)} kolom. Kolom: {', '.join(df.columns.tolist())}"
self.chat_history.append(("System", file_info))
return "File CSV berhasil diproses! Anda dapat mulai chat dengan model untuk analisis data."
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error pemrosesan file: {str(e)}"
def chat(self, message, history):
if self.chain is None:
return "Mohon upload file CSV terlebih dahulu."
try:
# Process the question with the chain
result = self.chain(message, self.chat_history)
# Get the answer with fallback
answer = result.get("answer", "Maaf, tidak dapat menghasilkan jawaban. Silakan coba pertanyaan lain.")
# Ensure we never return empty
if not answer or answer.strip() == "":
answer = "Maaf, tidak dapat menghasilkan jawaban yang sesuai. Silakan coba pertanyaan lain."
# Update internal chat history
self.chat_history.append((message, answer))
# Return just the answer for Gradio
return answer
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error: {str(e)}"
# UI Code
def create_gradio_interface():
with gr.Blocks(title="Chat with CSV using DeepSeek") as interface:
session_id = gr.State(lambda: str(uuid.uuid4()))
chatbot_state = gr.State(lambda: None)
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using DeepSeek</h1>")
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload CSV Anda",
file_types=[".csv"]
)
process_button = gr.Button("Proses CSV")
with gr.Accordion("Informasi Model", open=False):
gr.Markdown("""
**Fitur**:
- Tanya jawab berbasis data
- Analisis statistik otomatis
- Support berbagai format CSV
- Manajemen sesi per pengguna
""")
with gr.Column(scale=2):
chatbot_interface = gr.Chatbot(
label="Riwayat Chat",
height=400
)
message_input = gr.Textbox(
label="Ketik pesan Anda",
placeholder="Tanyakan tentang data CSV Anda...",
lines=2
)
submit_button = gr.Button("Kirim")
clear_button = gr.Button("Bersihkan Chat")
# Process file handler
def handle_process_file(file, sess_id):
chatbot = ChatBot(sess_id)
result = chatbot.process_file(file)
return chatbot, [(None, result)]
process_button.click(
fn=handle_process_file,
inputs=[file_input, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Chat handlers
def user_message_submitted(message, history, chatbot, sess_id):
history = history + [(message, None)]
return history, "", chatbot, sess_id
def bot_response(history, chatbot, sess_id):
if chatbot is None:
chatbot = ChatBot(sess_id)
history[-1] = (history[-1][0], "Mohon upload file CSV terlebih dahulu.")
return chatbot, history
user_message = history[-1][0]
response = chatbot.chat(user_message, history[:-1])
history[-1] = (user_message, response)
return chatbot, history
submit_button.click(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
message_input.submit(
fn=user_message_submitted,
inputs=[message_input, chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_interface, message_input, chatbot_state, session_id]
).then(
fn=bot_response,
inputs=[chatbot_interface, chatbot_state, session_id],
outputs=[chatbot_state, chatbot_interface]
)
# Clear chat handler
def handle_clear_chat(chatbot):
if chatbot is not None:
chatbot.chat_history = []
return chatbot, []
clear_button.click(
fn=handle_clear_chat,
inputs=[chatbot_state],
outputs=[chatbot_state, chatbot_interface]
)
return interface
# Launch the interface
demo = create_gradio_interface()
demo.launch(share=True) |