Spaces:
Running
Running
File size: 10,378 Bytes
f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 0132b7a f3b1064 0132b7a f3b1064 83b9034 0132b7a 5ec340b f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 5ec340b f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 dd0d853 f3b1064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
from datetime import datetime
import logging
import os
import tempfile
import time
from examples import examples
import librosa
import numpy as np
import sentencepiece as spm
import onnxruntime as ort
# Audio parameters (FIXED)
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
N_MELS = 80
# Tokenizer parameters
RNNT_BLANK = 1024
PAD = 1 # tokenizer.pad_id()
# Training parameters
ATTENTION_CONTEXT_SIZE = (160, 3)
# Whisper-small parameters
N_STATE = 768
N_HEAD = 12
N_LAYER = 12
AVERAGE_TEXT_LENGTH = 100
tokenizer = spm.SentencePieceProcessor(model_file="./tokenizer_spe_bpe_v1024_pad/tokenizer.model")
ort_encoder_session = ort.InferenceSession("./onnx/encoder_160_8.onnx")
ort_decoder_session = ort.InferenceSession("./onnx/decoder_160_8.onnx")
ort_jointer_session = ort.InferenceSession("./onnx/jointer_160_8.onnx")
ort_encoder_session_quant = ort.InferenceSession("./onnx/encoder_160_8-infer.quant.onnx")
ort_decoder_session_quant = ort.InferenceSession("./onnx/decoder_160_8-infer.quant.onnx")
ort_jointer_session_quant = ort.InferenceSession("./onnx/jointer_160_8-infer.quant.onnx")
demo = gr.Blocks()
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def MyPrint(s):
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{date_time}: {s}")
def process_microphone(
in_filename: str,
model_type: str
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first click 'Record from microphone', speak, "
"click 'Stop recording', and then "
"click the button 'submit for recognition'",
"result_item_error",
)
MyPrint(f"Processing microphone: {in_filename}")
try:
return process(
in_filename=in_filename,
model_type=model_type
)
except Exception as e:
MyPrint(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_uploaded_file(
in_filename: str,
model_type: str
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
MyPrint(f"Processing uploaded file: {in_filename}")
try:
return process(
in_filename=in_filename,
model_type=model_type
)
except Exception as e:
MyPrint(str(e))
return "", build_html_output(str(e), "result_item_error")
title = "# Vietnamese Streaming RNN-T"
description = """
Visit <https://github.com/HKAB/vietnamese-rnnt-tutorial/> for more information.
- This model runs on a very slow CPU (it's Free tier) so the RTF of FP32 model is around 1.5 (which means it will take 1.5 times the duration of the audio to process it).
- This model mights not work with your microphone since it was trained on a quite clean dataset. Try to speak loudly 😃
- Although you upload a full audio file, the model will process it in a streaming fashion.
"""
def onnx_online_inference(audio, ort_encoder_session, ort_decoder_session, ort_jointer_session, tokenizer):
audio = audio.astype(np.float32)
if audio.ndim == 1:
audio = np.expand_dims(audio, 0)
audio_cache = np.zeros((1, N_FFT - HOP_LENGTH), dtype=np.float32)
conv1_cache = np.zeros((1, N_MELS, 1), dtype=np.float32)
conv2_cache = np.zeros((1, N_STATE, 1), dtype=np.float32)
conv3_cache = np.zeros((1, N_STATE, 1), dtype=np.float32)
k_cache = np.zeros((N_LAYER, 1, ATTENTION_CONTEXT_SIZE[0], N_STATE), dtype=np.float32)
v_cache = np.zeros((N_LAYER, 1, ATTENTION_CONTEXT_SIZE[0], N_STATE), dtype=np.float32)
cache_len = np.zeros((1,), dtype=np.int32)
h_n = np.zeros((1, 1, N_STATE), dtype=np.float32)
token = np.array([[RNNT_BLANK]], dtype=np.int64)
seq_ids = []
reset_time = 0
for i in range(0, audio.shape[1], HOP_LENGTH * 31 + N_FFT - (N_FFT - HOP_LENGTH)):
audio_chunk = audio[:, i:i+HOP_LENGTH * 31 + N_FFT - (N_FFT - HOP_LENGTH)]
if audio_chunk.shape[1] < HOP_LENGTH * 31 + N_FFT - (N_FFT - HOP_LENGTH):
audio_chunk = np.pad(audio_chunk, ((0, 0), (0, HOP_LENGTH * 31 + N_FFT - (N_FFT - HOP_LENGTH) - audio_chunk.shape[1])))
# Very simple reset mechanism
if len(seq_ids) // AVERAGE_TEXT_LENGTH > reset_time:
audio_cache = np.zeros((1, N_FFT - HOP_LENGTH), dtype=np.float32)
conv1_cache = np.zeros((1, N_MELS, 1), dtype=np.float32)
conv2_cache = np.zeros((1, N_STATE, 1), dtype=np.float32)
conv3_cache = np.zeros((1, N_STATE, 1), dtype=np.float32)
k_cache = np.zeros((N_LAYER, 1, ATTENTION_CONTEXT_SIZE[0], N_STATE), dtype=np.float32)
v_cache = np.zeros((N_LAYER, 1, ATTENTION_CONTEXT_SIZE[0], N_STATE), dtype=np.float32)
cache_len = np.zeros((1,), dtype=np.int32)
h_n = np.zeros((1, 1, N_STATE), dtype=np.float32)
token = np.array([[RNNT_BLANK]], dtype=np.int64)
reset_time = len(seq_ids) // AVERAGE_TEXT_LENGTH
# print(f"Reset hidden_state and token at {i / 16000} seconds")
r = ort_encoder_session.run(
None,
{
"audio_chunk": audio_chunk,
"audio_cache.1": audio_cache,
"conv1_cache.1": conv1_cache,
"conv2_cache.1": conv2_cache,
"conv3_cache.1": conv3_cache,
"k_cache.1": k_cache,
"v_cache.1": v_cache,
"cache_len.1": cache_len
}
)
enc_out, audio_cache, conv1_cache, conv2_cache, conv3_cache, k_cache, v_cache, cache_len = r
for time_idx in range(enc_out.shape[1]):
curent_seq_enc_out = enc_out[:, time_idx, :].reshape(1, 1, N_STATE)
not_blank = True
symbols_added = 0
while not_blank and symbols_added < 3:
dec, new_h_n = ort_decoder_session.run(
None,
{
"token": token,
"h_n.1": h_n
}
)
logits = ort_jointer_session.run(
None,
{
"enc": curent_seq_enc_out,
"dec": dec
}
)[0]
new_token = int(logits.argmax())
if new_token == RNNT_BLANK:
not_blank = False
else:
symbols_added += 1
token = np.array([[new_token]], dtype=np.int64)
h_n = new_h_n
seq_ids.append(new_token)
return tokenizer.decode(seq_ids)
def process(
in_filename: str,
model_type: str
):
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
MyPrint(f"Started at {date_time}")
start = time.time()
audio, _ = librosa.load(in_filename, sr=SAMPLE_RATE)
audio = np.pad(audio, (16000, 0)) # add some zeros to the start of the audio for warmup
duration = len(audio) / SAMPLE_RATE
audio = np.expand_dims(audio, 0).astype(np.float32)
if model_type == "FP32":
MyPrint("Using FP32 model")
text = onnx_online_inference(audio, ort_encoder_session, ort_decoder_session, ort_jointer_session, tokenizer)
else:
MyPrint("Using INT8 model")
text = onnx_online_inference(audio, ort_encoder_session_quant, ort_decoder_session_quant, ort_jointer_session_quant, tokenizer)
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
rtf = (end - start) / duration
MyPrint(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Wave duration : {duration: .3f} s <br/>
Processing time: {end - start: .3f} s <br/>
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
"""
MyPrint(info)
MyPrint(f"\nPrediction: {text}")
return text, build_html_output(info)
with demo:
gr.Markdown(title)
gr.Markdown(description)
model_type = gr.Radio(["FP32", "INT8"], label="Model type", value="FP32", info="INT8 model is faster but less accurate")
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
sources=["upload"], # Choose between "microphone", "upload"
type="filepath",
label="Upload from disk",
)
upload_button = gr.Button("Submit for recognition")
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
uploaded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
uploaded_file,
model_type
],
outputs=[uploaded_output, uploaded_html_info],
fn=process_uploaded_file,
label="Cherry-picked examples",
)
with gr.TabItem("Record from microphone"):
microphone = gr.Audio(
sources=["microphone"], # Choose between "microphone", "upload"
type="filepath",
label="Record from microphone",
)
record_button = gr.Button("Submit for recognition")
recorded_output = gr.Textbox(label="Recognized speech from recordings")
recorded_html_info = gr.HTML(label="Info")
upload_button.click(
process_uploaded_file,
inputs=[
uploaded_file,
model_type
],
outputs=[uploaded_output, uploaded_html_info],
)
record_button.click(
process_microphone,
inputs=[
microphone,
model_type
],
outputs=[recorded_output, recorded_html_info],
)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch() |