import gradio as gr import requests from PIL import Image from io import BytesIO from transformers import AutoImageProcessor, AutoModelForImageClassification preprocessor = AutoImageProcessor.from_pretrained("hjay/autotrain-z7ygf-g8xy8") model = AutoModelForImageClassification.from_pretrained("hjay/autotrain-z7ygf-g8xy8") def predict(img_url): response = requests.get(img_url) input_img = Image.open(BytesIO(response.content)) inputs = preprocessor(images=input_img, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() return input_img, model.config.id2label[predicted_class_idx] gradio_app = gr.Interface( predict, inputs="textbox", outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], title="Cat Or Dog?", ) if __name__ == "__main__": gradio_app.launch()