Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
TITLE = "Handwritten Digit Recognition Demo"
|
7 |
+
|
8 |
+
DESCRIPTION = "This demo employs a basic CNN architecture inspired by [MIT 6.S191’s Lab2 Part1](https://github.com/aamini/introtodeeplearning/blob/master/lab2/Part1_MNIST.ipynb). "\
|
9 |
+
"It achieves about 98% accuracy on the MNIST test dataset but may perform poorly, particularly with digits 8 and 9, likely due to suboptimal image preprocessing."
|
10 |
+
|
11 |
+
model = tf.keras.saving.load_model("tf_model_mnist")
|
12 |
+
|
13 |
+
|
14 |
+
def preprocess(image):
|
15 |
+
""" Normalize Gradio image to MNIST format """
|
16 |
+
image = image.resize((28, 28), Image.Resampling.HAMMING)
|
17 |
+
img_array = np.asarray(image, dtype=np.float32)
|
18 |
+
for i in range(img_array.shape[0]):
|
19 |
+
for j in range(img_array.shape[1]):
|
20 |
+
alpha = img_array[i, j, 3]
|
21 |
+
if alpha == 0.:
|
22 |
+
img_array[i, j] = [0., 0., 0., 255.]
|
23 |
+
else:
|
24 |
+
img_array[i, j] = [255., 255., 255., 255.]
|
25 |
+
|
26 |
+
new_image = Image.fromarray(img_array.astype(np.uint8), "RGBA")
|
27 |
+
new_image = new_image.convert("L")
|
28 |
+
image_array = tf.keras.utils.img_to_array(new_image)
|
29 |
+
image_array = (np.expand_dims(image_array, axis=0)/255.).astype(np.float32)
|
30 |
+
return image_array, new_image
|
31 |
+
|
32 |
+
|
33 |
+
def predict(img):
|
34 |
+
img = img["composite"]
|
35 |
+
input_arr, new_image = preprocess(img)
|
36 |
+
print("input:", input_arr.shape)
|
37 |
+
predictions = model.predict(input_arr)
|
38 |
+
return {str(i): predictions[0][i] for i in range(10)}, new_image
|
39 |
+
|
40 |
+
|
41 |
+
input_image = gr.Sketchpad(
|
42 |
+
layers=False,
|
43 |
+
type="pil",
|
44 |
+
)
|
45 |
+
demo = gr.Interface(
|
46 |
+
title=TITLE,
|
47 |
+
description=DESCRIPTION,
|
48 |
+
predict,
|
49 |
+
inputs=input_image,
|
50 |
+
outputs=['label', 'image']
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
demo.launch()
|