ai_in_medicine / app.py
hherb's picture
Update app.py
d62785f verified
import streamlit as st
import PyPDF2
def extract_text_from_pdf(file):
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
st.title("ML Trainer")
# File uploader
uploaded_file = st.file_uploader("Choose a PDF or Text file", type=["pdf", "txt"])
if uploaded_file is not None:
if uploaded_file.type == "application/pdf":
text = extract_text_from_pdf(uploaded_file)
else: # Assuming it's a plain text file
text = uploaded_file.read().decode('utf-8')
# Display text fields
col1, col2 = st.columns(2)
with col1:
st.header("Uploaded Text")
st.text_area(text, height=300)
with col2:
st.header("User Notes")
user_notes = st.text_area("", height=200)
# Rating buttons
st.write("Rating:")
if st.button("Positive"):
rating("positive", user_notes)
if st.button("Satisfactory"):
rating("satisfactory", user_notes)
if st.button("Negative"):
rating("negative", user_notes)
def rating(rating_label, rationale):
# Placeholder for now - you'd add your ML model training logic here
st.write("Rating:", rating_label)
st.write("Rationale:", rationale)