Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 4 |
+
from peft import PeftModel
|
| 5 |
+
from flask import Flask, request, jsonify, render_template
|
| 6 |
+
|
| 7 |
+
# --- Load Model & Tokenizer ---
|
| 8 |
+
|
| 9 |
+
base_model_name = "unsloth/llama-3.2-3b-bnb-4bit"
|
| 10 |
+
adapter_model_name = "aismaanly/ai_synthetic"
|
| 11 |
+
|
| 12 |
+
bnb_config = BitsAndBytesConfig(
|
| 13 |
+
load_in_4bit=True,
|
| 14 |
+
bnb_4bit_quant_type="nf4",
|
| 15 |
+
bnb_4bit_use_double_quant=True,
|
| 16 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
print("Loading base model...")
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
base_model_name,
|
| 22 |
+
quantization_config=bnb_config,
|
| 23 |
+
device_map="auto"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
print("Loading tokenizer...")
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 28 |
+
|
| 29 |
+
print("Loading PEFT adapter...")
|
| 30 |
+
model = PeftModel.from_pretrained(model, adapter_model_name)
|
| 31 |
+
model = model.merge_and_unload()
|
| 32 |
+
print("Model ready!")
|
| 33 |
+
|
| 34 |
+
# --- Flask App ---
|
| 35 |
+
|
| 36 |
+
app = Flask(__name__)
|
| 37 |
+
|
| 38 |
+
@app.route("/")
|
| 39 |
+
def index():
|
| 40 |
+
return render_template("index.html")
|
| 41 |
+
|
| 42 |
+
@app.route("/generate", methods=["POST"])
|
| 43 |
+
def generate():
|
| 44 |
+
data = request.get_json()
|
| 45 |
+
prompt = data.get("prompt")
|
| 46 |
+
|
| 47 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 48 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 49 |
+
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 50 |
+
|
| 51 |
+
return jsonify({
|
| 52 |
+
"generated_text": text
|
| 53 |
+
})
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
port = int(os.environ.get("PORT", 7860))
|
| 57 |
+
app.run(host="0.0.0.0", port=port)
|