Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as grad | |
codegen_tkn = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-mono') | |
mdl = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-350M-mono') | |
def codegen(intent): | |
# given input as text which reflects intent of the program. | |
# text = " write a function which takes 2 numbers as input | |
# and returns the larger of the two" | |
input_ids = codegen_tkn(intent, return_tensors = 'pt').input_ids | |
gen_ids = mdl.generate(input_ids, max_length = 1024) | |
response = codegen_tkn.decode(gen_ids[0], skip_special_tokens = True) | |
return response | |
output = grad.Textbox(lines = 1, label = 'Generated Python Code', placeholder = '') | |
inp = grad.Textbox(lines = 1, label = 'Place your intent here') | |
grad.Interface( | |
codegen, | |
inputs = inp, | |
outputs = output | |
).launch() | |