crypt / finetune /qlib_test.py
heyunfei's picture
Upload 56 files
85653bc verified
import os
import sys
import argparse
import pickle
from collections import defaultdict
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from tqdm import trange, tqdm
from matplotlib import pyplot as plt
import qlib
from qlib.config import REG_CN
from qlib.backtest import backtest, executor, CommonInfrastructure
from qlib.contrib.evaluate import risk_analysis
from qlib.contrib.strategy import TopkDropoutStrategy
from qlib.utils import flatten_dict
from qlib.utils.time import Freq
# Ensure project root is in the Python path
sys.path.append("../")
from config import Config
from model.kronos import Kronos, KronosTokenizer, auto_regressive_inference
# =================================================================================
# 1. Data Loading and Processing for Inference
# =================================================================================
class QlibTestDataset(Dataset):
"""
PyTorch Dataset for handling Qlib test data, specifically for inference.
This dataset iterates through all possible sliding windows sequentially. It also
yields metadata like symbol and timestamp, which are crucial for mapping
predictions back to the original time series.
"""
def __init__(self, data: dict, config: Config):
self.data = data
self.config = config
self.window_size = config.lookback_window + config.predict_window
self.symbols = list(self.data.keys())
self.feature_list = config.feature_list
self.time_feature_list = config.time_feature_list
self.indices = []
print("Preprocessing and building indices for test dataset...")
for symbol in self.symbols:
df = self.data[symbol].reset_index()
# Generate time features on-the-fly
df['minute'] = df['datetime'].dt.minute
df['hour'] = df['datetime'].dt.hour
df['weekday'] = df['datetime'].dt.weekday
df['day'] = df['datetime'].dt.day
df['month'] = df['datetime'].dt.month
self.data[symbol] = df # Store preprocessed dataframe
num_samples = len(df) - self.window_size + 1
if num_samples > 0:
for i in range(num_samples):
timestamp = df.iloc[i + self.config.lookback_window - 1]['datetime']
self.indices.append((symbol, i, timestamp))
def __len__(self) -> int:
return len(self.indices)
def __getitem__(self, idx: int):
symbol, start_idx, timestamp = self.indices[idx]
df = self.data[symbol]
context_end = start_idx + self.config.lookback_window
predict_end = context_end + self.config.predict_window
context_df = df.iloc[start_idx:context_end]
predict_df = df.iloc[context_end:predict_end]
x = context_df[self.feature_list].values.astype(np.float32)
x_stamp = context_df[self.time_feature_list].values.astype(np.float32)
y_stamp = predict_df[self.time_feature_list].values.astype(np.float32)
# Instance-level normalization, consistent with training
x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0)
x = (x - x_mean) / (x_std + 1e-5)
x = np.clip(x, -self.config.clip, self.config.clip)
return torch.from_numpy(x), torch.from_numpy(x_stamp), torch.from_numpy(y_stamp), symbol, timestamp
# =================================================================================
# 2. Backtesting Logic
# =================================================================================
class QlibBacktest:
"""
A wrapper class for conducting backtesting experiments using Qlib.
"""
def __init__(self, config: Config):
self.config = config
self.initialize_qlib()
def initialize_qlib(self):
"""Initializes the Qlib environment."""
print("Initializing Qlib for backtesting...")
qlib.init(provider_uri=self.config.qlib_data_path, region=REG_CN)
def run_single_backtest(self, signal_series: pd.Series) -> pd.DataFrame:
"""
Runs a single backtest for a given prediction signal.
Args:
signal_series (pd.Series): A pandas Series with a MultiIndex
(instrument, datetime) and prediction scores.
Returns:
pd.DataFrame: A DataFrame containing the performance report.
"""
strategy = TopkDropoutStrategy(
topk=self.config.backtest_n_symbol_hold,
n_drop=self.config.backtest_n_symbol_drop,
hold_thresh=self.config.backtest_hold_thresh,
signal=signal_series,
)
executor_config = {
"time_per_step": "day",
"generate_portfolio_metrics": True,
"delay_execution": True,
}
backtest_config = {
"start_time": self.config.backtest_time_range[0],
"end_time": self.config.backtest_time_range[1],
"account": 100_000_000,
"benchmark": self.config.backtest_benchmark,
"exchange_kwargs": {
"freq": "day", "limit_threshold": 0.095, "deal_price": "open",
"open_cost": 0.001, "close_cost": 0.0015, "min_cost": 5,
},
"executor": executor.SimulatorExecutor(**executor_config),
}
portfolio_metric_dict, _ = backtest(strategy=strategy, **backtest_config)
analysis_freq = "{0}{1}".format(*Freq.parse("day"))
report, _ = portfolio_metric_dict.get(analysis_freq)
# --- Analysis and Reporting ---
analysis = {
"excess_return_without_cost": risk_analysis(report["return"] - report["bench"], freq=analysis_freq),
"excess_return_with_cost": risk_analysis(report["return"] - report["bench"] - report["cost"], freq=analysis_freq),
}
print("\n--- Backtest Analysis ---")
print("Benchmark Return:", risk_analysis(report["bench"], freq=analysis_freq), sep='\n')
print("\nExcess Return (w/o cost):", analysis["excess_return_without_cost"], sep='\n')
print("\nExcess Return (w/ cost):", analysis["excess_return_with_cost"], sep='\n')
report_df = pd.DataFrame({
"cum_bench": report["bench"].cumsum(),
"cum_return_w_cost": (report["return"] - report["cost"]).cumsum(),
"cum_ex_return_w_cost": (report["return"] - report["bench"] - report["cost"]).cumsum(),
})
return report_df
def run_and_plot_results(self, signals: dict[str, pd.DataFrame]):
"""
Runs backtests for multiple signals and plots the cumulative return curves.
Args:
signals (dict[str, pd.DataFrame]): A dictionary where keys are signal names
and values are prediction DataFrames.
"""
return_df, ex_return_df, bench_df = pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
for signal_name, pred_df in signals.items():
print(f"\nBacktesting signal: {signal_name}...")
pred_series = pred_df.stack()
pred_series.index.names = ['datetime', 'instrument']
pred_series = pred_series.swaplevel().sort_index()
report_df = self.run_single_backtest(pred_series)
return_df[signal_name] = report_df['cum_return_w_cost']
ex_return_df[signal_name] = report_df['cum_ex_return_w_cost']
if 'return' not in bench_df:
bench_df['return'] = report_df['cum_bench']
# Plotting results
fig, axes = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
return_df.plot(ax=axes[0], title='Cumulative Return with Cost', grid=True)
axes[0].plot(bench_df['return'], label=self.config.instrument.upper(), color='black', linestyle='--')
axes[0].legend()
axes[0].set_ylabel("Cumulative Return")
ex_return_df.plot(ax=axes[1], title='Cumulative Excess Return with Cost', grid=True)
axes[1].legend()
axes[1].set_xlabel("Date")
axes[1].set_ylabel("Cumulative Excess Return")
plt.tight_layout()
plt.savefig("../figures/backtest_result_example.png", dpi=200)
plt.show()
# =================================================================================
# 3. Inference Logic
# =================================================================================
def load_models(config: dict) -> tuple[KronosTokenizer, Kronos]:
"""Loads the fine-tuned tokenizer and predictor model."""
device = torch.device(config['device'])
print(f"Loading models onto device: {device}...")
tokenizer = KronosTokenizer.from_pretrained(config['tokenizer_path']).to(device).eval()
model = Kronos.from_pretrained(config['model_path']).to(device).eval()
return tokenizer, model
def collate_fn_for_inference(batch):
"""
Custom collate function to handle batches containing Tensors, strings, and Timestamps.
Args:
batch (list): A list of samples, where each sample is the tuple returned by
QlibTestDataset.__getitem__.
Returns:
A single tuple containing the batched data.
"""
# Unzip the list of samples into separate lists for each data type
x, x_stamp, y_stamp, symbols, timestamps = zip(*batch)
# Stack the tensors to create a batch
x_batch = torch.stack(x, dim=0)
x_stamp_batch = torch.stack(x_stamp, dim=0)
y_stamp_batch = torch.stack(y_stamp, dim=0)
# Return the strings and timestamps as lists
return x_batch, x_stamp_batch, y_stamp_batch, list(symbols), list(timestamps)
def generate_predictions(config: dict, test_data: dict) -> dict[str, pd.DataFrame]:
"""
Runs inference on the test dataset to generate prediction signals.
Args:
config (dict): A dictionary containing inference parameters.
test_data (dict): The raw test data loaded from a pickle file.
Returns:
A dictionary where keys are signal types (e.g., 'mean', 'last') and
values are DataFrames of predictions (datetime index, symbol columns).
"""
tokenizer, model = load_models(config)
device = torch.device(config['device'])
# Use the Dataset and DataLoader for efficient batching and processing
dataset = QlibTestDataset(data=test_data, config=Config())
loader = DataLoader(
dataset,
batch_size=config['batch_size'] // config['sample_count'],
shuffle=False,
num_workers=os.cpu_count() // 2,
collate_fn=collate_fn_for_inference
)
results = defaultdict(list)
with torch.no_grad():
for x, x_stamp, y_stamp, symbols, timestamps in tqdm(loader, desc="Inference"):
preds = auto_regressive_inference(
tokenizer, model, x.to(device), x_stamp.to(device), y_stamp.to(device),
max_context=config['max_context'], pred_len=config['pred_len'], clip=config['clip'],
T=config['T'], top_k=config['top_k'], top_p=config['top_p'], sample_count=config['sample_count']
)
# The 'close' price is at index 3 in `feature_list`
last_day_close = x[:, -1, 3].numpy()
signals = {
'last': preds[:, -1, 3] - last_day_close,
'mean': np.mean(preds[:, :, 3], axis=1) - last_day_close,
'max': np.max(preds[:, :, 3], axis=1) - last_day_close,
'min': np.min(preds[:, :, 3], axis=1) - last_day_close,
}
for i in range(len(symbols)):
for sig_type, sig_values in signals.items():
results[sig_type].append((timestamps[i], symbols[i], sig_values[i]))
print("Post-processing predictions into DataFrames...")
prediction_dfs = {}
for sig_type, records in results.items():
df = pd.DataFrame(records, columns=['datetime', 'instrument', 'score'])
pivot_df = df.pivot_table(index='datetime', columns='instrument', values='score')
prediction_dfs[sig_type] = pivot_df.sort_index()
return prediction_dfs
# =================================================================================
# 4. Main Execution
# =================================================================================
def main():
"""Main function to set up config, run inference, and execute backtesting."""
parser = argparse.ArgumentParser(description="Run Kronos Inference and Backtesting")
parser.add_argument("--device", type=str, default="cuda:1", help="Device for inference (e.g., 'cuda:0', 'cpu')")
args = parser.parse_args()
# --- 1. Configuration Setup ---
base_config = Config()
# Create a dedicated dictionary for this run's configuration
run_config = {
'device': args.device,
'data_path': base_config.dataset_path,
'result_save_path': base_config.backtest_result_path,
'result_name': base_config.backtest_save_folder_name,
'tokenizer_path': base_config.finetuned_tokenizer_path,
'model_path': base_config.finetuned_predictor_path,
'max_context': base_config.max_context,
'pred_len': base_config.predict_window,
'clip': base_config.clip,
'T': base_config.inference_T,
'top_k': base_config.inference_top_k,
'top_p': base_config.inference_top_p,
'sample_count': base_config.inference_sample_count,
'batch_size': base_config.backtest_batch_size,
}
print("--- Running with Configuration ---")
for key, val in run_config.items():
print(f"{key:>20}: {val}")
print("-" * 35)
# --- 2. Load Data ---
test_data_path = os.path.join(run_config['data_path'], "test_data.pkl")
print(f"Loading test data from {test_data_path}...")
with open(test_data_path, 'rb') as f:
test_data = pickle.load(f)
print(test_data)
# --- 3. Generate Predictions ---
model_preds = generate_predictions(run_config, test_data)
# --- 4. Save Predictions ---
save_dir = os.path.join(run_config['result_save_path'], run_config['result_name'])
os.makedirs(save_dir, exist_ok=True)
predictions_file = os.path.join(save_dir, "predictions.pkl")
print(f"Saving prediction signals to {predictions_file}...")
with open(predictions_file, 'wb') as f:
pickle.dump(model_preds, f)
# --- 5. Run Backtesting ---
with open(predictions_file, 'rb') as f:
model_preds = pickle.load(f)
backtester = QlibBacktest(base_config)
backtester.run_and_plot_results(model_preds)
if __name__ == '__main__':
main()