|
|
import pandas as pd
|
|
|
import matplotlib.pyplot as plt
|
|
|
import sys
|
|
|
sys.path.append("../")
|
|
|
from model import Kronos, KronosTokenizer, KronosPredictor
|
|
|
|
|
|
|
|
|
def plot_prediction(kline_df, pred_df):
|
|
|
pred_df.index = kline_df.index[-pred_df.shape[0]:]
|
|
|
sr_close = kline_df['close']
|
|
|
sr_pred_close = pred_df['close']
|
|
|
sr_close.name = 'Ground Truth'
|
|
|
sr_pred_close.name = "Prediction"
|
|
|
|
|
|
sr_volume = kline_df['volume']
|
|
|
sr_pred_volume = pred_df['volume']
|
|
|
sr_volume.name = 'Ground Truth'
|
|
|
sr_pred_volume.name = "Prediction"
|
|
|
|
|
|
close_df = pd.concat([sr_close, sr_pred_close], axis=1)
|
|
|
volume_df = pd.concat([sr_volume, sr_pred_volume], axis=1)
|
|
|
|
|
|
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6), sharex=True)
|
|
|
|
|
|
ax1.plot(close_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5)
|
|
|
ax1.plot(close_df['Prediction'], label='Prediction', color='red', linewidth=1.5)
|
|
|
ax1.set_ylabel('Close Price', fontsize=14)
|
|
|
ax1.legend(loc='lower left', fontsize=12)
|
|
|
ax1.grid(True)
|
|
|
|
|
|
ax2.plot(volume_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5)
|
|
|
ax2.plot(volume_df['Prediction'], label='Prediction', color='red', linewidth=1.5)
|
|
|
ax2.set_ylabel('Volume', fontsize=14)
|
|
|
ax2.legend(loc='upper left', fontsize=12)
|
|
|
ax2.grid(True)
|
|
|
|
|
|
plt.tight_layout()
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer = KronosTokenizer.from_pretrained('/home/csc/huggingface/Kronos-Tokenizer-base/')
|
|
|
model = Kronos.from_pretrained("/home/csc/huggingface/Kronos-base/")
|
|
|
|
|
|
|
|
|
predictor = KronosPredictor(model, tokenizer, device="cuda:0", max_context=512)
|
|
|
|
|
|
|
|
|
df = pd.read_csv("./data/XSHG_5min_600977.csv")
|
|
|
df['timestamps'] = pd.to_datetime(df['timestamps'])
|
|
|
|
|
|
lookback = 400
|
|
|
pred_len = 120
|
|
|
|
|
|
dfs = []
|
|
|
xtsp = []
|
|
|
ytsp = []
|
|
|
for i in range(5):
|
|
|
idf = df.loc[(i*400):(i*400+lookback-1), ['open', 'high', 'low', 'close', 'volume', 'amount']]
|
|
|
i_x_timestamp = df.loc[(i*400):(i*400+lookback-1), 'timestamps']
|
|
|
i_y_timestamp = df.loc[(i*400+lookback):(i*400+lookback+pred_len-1), 'timestamps']
|
|
|
|
|
|
dfs.append(idf)
|
|
|
xtsp.append(i_x_timestamp)
|
|
|
ytsp.append(i_y_timestamp)
|
|
|
|
|
|
pred_df = predictor.predict_batch(
|
|
|
df_list=dfs,
|
|
|
x_timestamp_list=xtsp,
|
|
|
y_timestamp_list=ytsp,
|
|
|
pred_len=pred_len,
|
|
|
)
|
|
|
|