crypt / examples /prediction_batch_example.py
heyunfei's picture
Upload 56 files
85653bc verified
raw
history blame
2.38 kB
import pandas as pd
import matplotlib.pyplot as plt
import sys
sys.path.append("../")
from model import Kronos, KronosTokenizer, KronosPredictor
def plot_prediction(kline_df, pred_df):
pred_df.index = kline_df.index[-pred_df.shape[0]:]
sr_close = kline_df['close']
sr_pred_close = pred_df['close']
sr_close.name = 'Ground Truth'
sr_pred_close.name = "Prediction"
sr_volume = kline_df['volume']
sr_pred_volume = pred_df['volume']
sr_volume.name = 'Ground Truth'
sr_pred_volume.name = "Prediction"
close_df = pd.concat([sr_close, sr_pred_close], axis=1)
volume_df = pd.concat([sr_volume, sr_pred_volume], axis=1)
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 6), sharex=True)
ax1.plot(close_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5)
ax1.plot(close_df['Prediction'], label='Prediction', color='red', linewidth=1.5)
ax1.set_ylabel('Close Price', fontsize=14)
ax1.legend(loc='lower left', fontsize=12)
ax1.grid(True)
ax2.plot(volume_df['Ground Truth'], label='Ground Truth', color='blue', linewidth=1.5)
ax2.plot(volume_df['Prediction'], label='Prediction', color='red', linewidth=1.5)
ax2.set_ylabel('Volume', fontsize=14)
ax2.legend(loc='upper left', fontsize=12)
ax2.grid(True)
plt.tight_layout()
plt.show()
# 1. Load Model and Tokenizer
tokenizer = KronosTokenizer.from_pretrained('/home/csc/huggingface/Kronos-Tokenizer-base/')
model = Kronos.from_pretrained("/home/csc/huggingface/Kronos-base/")
# 2. Instantiate Predictor
predictor = KronosPredictor(model, tokenizer, device="cuda:0", max_context=512)
# 3. Prepare Data
df = pd.read_csv("./data/XSHG_5min_600977.csv")
df['timestamps'] = pd.to_datetime(df['timestamps'])
lookback = 400
pred_len = 120
dfs = []
xtsp = []
ytsp = []
for i in range(5):
idf = df.loc[(i*400):(i*400+lookback-1), ['open', 'high', 'low', 'close', 'volume', 'amount']]
i_x_timestamp = df.loc[(i*400):(i*400+lookback-1), 'timestamps']
i_y_timestamp = df.loc[(i*400+lookback):(i*400+lookback+pred_len-1), 'timestamps']
dfs.append(idf)
xtsp.append(i_x_timestamp)
ytsp.append(i_y_timestamp)
pred_df = predictor.predict_batch(
df_list=dfs,
x_timestamp_list=xtsp,
y_timestamp_list=ytsp,
pred_len=pred_len,
)