File size: 11,482 Bytes
85653bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import sys
import json
import time
from time import gmtime, strftime
import argparse
import datetime
import torch.distributed as dist
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import comet_ml
# Ensure project root is in path
sys.path.append("../")
from config import Config
from dataset import QlibDataset
from model.kronos import KronosTokenizer
# Import shared utilities
from utils.training_utils import (
setup_ddp,
cleanup_ddp,
set_seed,
get_model_size,
format_time,
)
def create_dataloaders(config: dict, rank: int, world_size: int):
"""
Creates and returns distributed dataloaders for training and validation.
Args:
config (dict): A dictionary of configuration parameters.
rank (int): The global rank of the current process.
world_size (int): The total number of processes.
Returns:
tuple: A tuple containing (train_loader, val_loader, train_dataset, valid_dataset).
"""
print(f"[Rank {rank}] Creating distributed dataloaders...")
train_dataset = QlibDataset('train')
valid_dataset = QlibDataset('val')
print(f"[Rank {rank}] Train dataset size: {len(train_dataset)}, Validation dataset size: {len(valid_dataset)}")
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank, shuffle=True)
val_sampler = DistributedSampler(valid_dataset, num_replicas=world_size, rank=rank, shuffle=False)
train_loader = DataLoader(
train_dataset,
batch_size=config['batch_size'],
sampler=train_sampler,
shuffle=False, # Shuffle is handled by the sampler
num_workers=config.get('num_workers', 2),
pin_memory=True,
drop_last=True
)
val_loader = DataLoader(
valid_dataset,
batch_size=config['batch_size'],
sampler=val_sampler,
shuffle=False,
num_workers=config.get('num_workers', 2),
pin_memory=True,
drop_last=False
)
print(f"[Rank {rank}] Dataloaders created. Train steps/epoch: {len(train_loader)}, Val steps: {len(val_loader)}")
return train_loader, val_loader, train_dataset, valid_dataset
def train_model(model, device, config, save_dir, logger, rank, world_size):
"""
The main training and validation loop for the tokenizer.
Args:
model (DDP): The DDP-wrapped model to train.
device (torch.device): The device for the current process.
config (dict): Configuration dictionary.
save_dir (str): Directory to save checkpoints.
logger (comet_ml.Experiment): Comet logger instance.
rank (int): Global rank of the process.
world_size (int): Total number of processes.
Returns:
tuple: A tuple containing the trained model and a dictionary of results.
"""
start_time = time.time()
if rank == 0:
effective_bs = config['batch_size'] * world_size * config['accumulation_steps']
print(f"[Rank {rank}] BATCHSIZE (per GPU): {config['batch_size']}")
print(f"[Rank {rank}] Effective total batch size: {effective_bs}")
train_loader, val_loader, train_dataset, valid_dataset = create_dataloaders(config, rank, world_size)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config['tokenizer_learning_rate'],
weight_decay=config['adam_weight_decay']
)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=config['tokenizer_learning_rate'],
steps_per_epoch=len(train_loader),
epochs=config['epochs'],
pct_start=0.03,
div_factor=10
)
best_val_loss = float('inf')
dt_result = {}
batch_idx_global_train = 0
for epoch_idx in range(config['epochs']):
epoch_start_time = time.time()
model.train()
train_loader.sampler.set_epoch(epoch_idx)
# Set dataset seeds for reproducible sampling
train_dataset.set_epoch_seed(epoch_idx * 10000 + rank)
valid_dataset.set_epoch_seed(0) # Keep validation sampling consistent
for i, (ori_batch_x, _) in enumerate(train_loader):
ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True)
# --- Gradient Accumulation Loop ---
current_batch_total_loss = 0.0
for j in range(config['accumulation_steps']):
start_idx = j * (ori_batch_x.shape[0] // config['accumulation_steps'])
end_idx = (j + 1) * (ori_batch_x.shape[0] // config['accumulation_steps'])
batch_x = ori_batch_x[start_idx:end_idx]
# Forward pass
zs, bsq_loss, _, _ = model(batch_x)
z_pre, z = zs
# Loss calculation
recon_loss_pre = F.mse_loss(z_pre, batch_x)
recon_loss_all = F.mse_loss(z, batch_x)
recon_loss = recon_loss_pre + recon_loss_all
loss = (recon_loss + bsq_loss) / 2 # Assuming w_1=w_2=1
loss_scaled = loss / config['accumulation_steps']
current_batch_total_loss += loss.item()
loss_scaled.backward()
# --- Optimizer Step after Accumulation ---
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=2.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
# --- Logging (Master Process Only) ---
if rank == 0 and (batch_idx_global_train + 1) % config['log_interval'] == 0:
avg_loss = current_batch_total_loss / config['accumulation_steps']
print(
f"[Rank {rank}, Epoch {epoch_idx + 1}/{config['epochs']}, Step {i + 1}/{len(train_loader)}] "
f"LR {optimizer.param_groups[0]['lr']:.6f}, Loss: {avg_loss:.4f}"
)
if rank == 0 and logger:
avg_loss = current_batch_total_loss / config['accumulation_steps']
logger.log_metric('train_tokenizer_loss_batch', avg_loss, step=batch_idx_global_train)
logger.log_metric(f'train_vqvae_vq_loss_each_batch', bsq_loss.item(), step=batch_idx_global_train)
logger.log_metric(f'train_recon_loss_pre_each_batch', recon_loss_pre.item(), step=batch_idx_global_train)
logger.log_metric(f'train_recon_loss_each_batch', recon_loss_all.item(), step=batch_idx_global_train)
logger.log_metric('tokenizer_learning_rate', optimizer.param_groups[0]["lr"], step=batch_idx_global_train)
batch_idx_global_train += 1
# --- Validation Loop ---
model.eval()
tot_val_loss_sum_rank = 0.0
val_sample_count_rank = 0
with torch.no_grad():
for ori_batch_x, _ in val_loader:
ori_batch_x = ori_batch_x.squeeze(0).to(device, non_blocking=True)
zs, _, _, _ = model(ori_batch_x)
_, z = zs
val_loss_item = F.mse_loss(z, ori_batch_x)
tot_val_loss_sum_rank += val_loss_item.item() * ori_batch_x.size(0)
val_sample_count_rank += ori_batch_x.size(0)
# Reduce validation losses from all processes
val_loss_sum_tensor = torch.tensor(tot_val_loss_sum_rank, device=device)
val_count_tensor = torch.tensor(val_sample_count_rank, device=device)
dist.all_reduce(val_loss_sum_tensor, op=dist.ReduceOp.SUM)
dist.all_reduce(val_count_tensor, op=dist.ReduceOp.SUM)
avg_val_loss = val_loss_sum_tensor.item() / val_count_tensor.item() if val_count_tensor.item() > 0 else 0
# --- End of Epoch Summary & Checkpointing (Master Process Only) ---
if rank == 0:
print(f"\n--- Epoch {epoch_idx + 1}/{config['epochs']} Summary ---")
print(f"Validation Loss: {avg_val_loss:.4f}")
print(f"Time This Epoch: {format_time(time.time() - epoch_start_time)}")
print(f"Total Time Elapsed: {format_time(time.time() - start_time)}\n")
if logger:
logger.log_metric('val_tokenizer_loss_epoch', avg_val_loss, epoch=epoch_idx)
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
save_path = f"{save_dir}/checkpoints/best_model"
model.module.save_pretrained(save_path)
print(f"Best model saved to {save_path} (Val Loss: {best_val_loss:.4f})")
if logger:
logger.log_model("best_model", save_path)
dist.barrier() # Ensure all processes finish the epoch before starting the next one.
dt_result['best_val_loss'] = best_val_loss
return model, dt_result
def main(config: dict):
"""
Main function to orchestrate the DDP training process.
"""
rank, world_size, local_rank = setup_ddp()
device = torch.device(f"cuda:{local_rank}")
set_seed(config['seed'], rank)
save_dir = os.path.join(config['save_path'], config['tokenizer_save_folder_name'])
# Logger and summary setup (master process only)
comet_logger, master_summary = None, {}
if rank == 0:
os.makedirs(os.path.join(save_dir, 'checkpoints'), exist_ok=True)
master_summary = {
'start_time': strftime("%Y-%m-%dT%H-%M-%S", gmtime()),
'save_directory': save_dir,
'world_size': world_size,
}
if config['use_comet']:
comet_logger = comet_ml.Experiment(
api_key=config['comet_config']['api_key'],
project_name=config['comet_config']['project_name'],
workspace=config['comet_config']['workspace'],
)
comet_logger.add_tag(config['comet_tag'])
comet_logger.set_name(config['comet_name'])
comet_logger.log_parameters(config)
print("Comet Logger Initialized.")
dist.barrier() # Ensure save directory is created before proceeding
# Model Initialization
model = KronosTokenizer.from_pretrained(config['pretrained_tokenizer_path'])
model.to(device)
model = DDP(model, device_ids=[local_rank], find_unused_parameters=False)
if rank == 0:
print(f"Model Size: {get_model_size(model.module)}")
# Start Training
_, dt_result = train_model(
model, device, config, save_dir, comet_logger, rank, world_size
)
# Finalize and save summary (master process only)
if rank == 0:
master_summary['final_result'] = dt_result
with open(os.path.join(save_dir, 'summary.json'), 'w') as f:
json.dump(master_summary, f, indent=4)
print('Training finished. Summary file saved.')
if comet_logger:
comet_logger.end()
cleanup_ddp()
if __name__ == '__main__':
# Usage: torchrun --standalone --nproc_per_node=NUM_GPUS train_tokenizer.py
if "WORLD_SIZE" not in os.environ:
raise RuntimeError("This script must be launched with `torchrun`.")
config_instance = Config()
main(config_instance.__dict__)
|