import spaces from kokoro import KModel, KPipeline import gradio as gr import os import random import torch IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/') CHAR_LIMIT = None if IS_DUPLICATE else 5000 CUDA_AVAILABLE = torch.cuda.is_available() models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])} pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'} pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO' pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ' @spaces.GPU(duration=10) def forward_gpu(ps, ref_s, speed): return models[True](ps, ref_s, speed) def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) return (24000, audio.numpy()), ps return None, '' # Arena API def predict(text, voice='af_heart', speed=1): return return_audio_ps(text, voice, speed, use_gpu=False)[0] def tokenize_first(text, voice='af_heart'): pipeline = pipelines[voice[0]] for _, ps, _ in pipeline(text, voice): return ps return '' def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE): text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT] pipeline = pipelines[voice[0]] pack = pipeline.load_voice(voice) use_gpu = use_gpu and CUDA_AVAILABLE for _, ps, _ in pipeline(text, voice, speed): ref_s = pack[len(ps)-1] try: if use_gpu: audio = forward_gpu(ps, ref_s, speed) else: audio = models[False](ps, ref_s, speed) except gr.exceptions.Error as e: if use_gpu: gr.Warning(str(e)) gr.Info('Switching to CPU') audio = models[False](ps, ref_s, speed) else: raise gr.Error(e) yield 24000, audio.numpy() random_texts = {} for lang in ['en']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): lang = dict(a='en', b='en')[voice[0]] return random.choice(random_texts[lang]) CHOICES = { '🇺🇸 🚺 Heart ❤️': 'af_heart', '🇺🇸 🚺 Bella 🔥': 'af_bella', '🇺🇸 🚺 Nicole 🎧': 'af_nicole', '🇺🇸 🚺 Aoede': 'af_aoede', '🇺🇸 🚺 Kore': 'af_kore', '🇺🇸 🚺 Sarah': 'af_sarah', '🇺🇸 🚺 Nova': 'af_nova', '🇺🇸 🚺 Sky': 'af_sky', '🇺🇸 🚺 Alloy': 'af_alloy', '🇺🇸 🚺 Jessica': 'af_jessica', '🇺🇸 🚺 River': 'af_river', '🇺🇸 🚹 Michael': 'am_michael', '🇺🇸 🚹 Fenrir': 'am_fenrir', '🇺🇸 🚹 Puck': 'am_puck', '🇺🇸 🚹 Echo': 'am_echo', '🇺🇸 🚹 Eric': 'am_eric', '🇺🇸 🚹 Liam': 'am_liam', '🇺🇸 🚹 Onyx': 'am_onyx', '🇺🇸 🚹 Santa': 'am_santa', '🇺🇸 🚹 Adam': 'am_adam', '🇬🇧 🚺 Emma': 'bf_emma', '🇬🇧 🚺 Isabella': 'bf_isabella', '🇬🇧 🚺 Alice': 'bf_alice', '🇬🇧 🚺 Lily': 'bf_lily', '🇬🇧 🚹 George': 'bm_george', '🇬🇧 🚹 Fable': 'bm_fable', '🇬🇧 🚹 Lewis': 'bm_lewis', '🇬🇧 🚹 Daniel': 'bm_daniel', } for v in CHOICES.values(): pipelines[v[0]].load_voice(v) TOKEN_NOTE = ''' 💡 You can customize pronunciation like this: `[Kokoro](/kˈOkəɹO/)` ⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)` ⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words) ''' with gr.Blocks() as generate_tab: out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True) generate_btn = gr.Button('Generate', variant='primary') with gr.Accordion('Output Tokens', open=False): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.') tokenize_btn = gr.Button('Tokenize', variant='secondary') gr.Markdown(TOKEN_NOTE) predict_btn = gr.Button('Predict', variant='secondary', visible=False) STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.'] if CHAR_LIMIT is not None: STREAM_NOTE.append(f'✂️ Each stream is capped at {CHAR_LIMIT} characters.') STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:') STREAM_NOTE = '\n\n'.join(STREAM_NOTE) with gr.Blocks() as stream_tab: out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True) with gr.Row(): stream_btn = gr.Button('Stream', variant='primary') stop_btn = gr.Button('Stop', variant='stop') with gr.Accordion('Note', open=True): gr.Markdown(STREAM_NOTE) gr.DuplicateButton() API_OPEN = os.getenv('SPACE_ID') != 'hexgrad/Kokoro-TTS' API_NAME = None if API_OPEN else False with gr.Blocks() as app: with gr.Row(): gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True) with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'∞' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream") with gr.Row(): voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language') use_gpu = gr.Dropdown( [('ZeroGPU 🚀', True), ('CPU 🐌', False)], value=CUDA_AVAILABLE, label='Hardware', info='GPU is usually faster, but has a usage quota', interactive=CUDA_AVAILABLE ) speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed') random_btn = gr.Button('Random Text', variant='secondary') with gr.Column(): gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream']) random_btn.click(fn=get_random_text, inputs=[voice], outputs=[text], api_name=API_NAME) generate_btn.click(fn=generate_first, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps], api_name=API_NAME) tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME) stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed, use_gpu], outputs=[out_stream], api_name=API_NAME) stop_btn.click(fn=None, cancels=stream_event) predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME) if __name__ == '__main__': app.queue(api_open=API_OPEN).launch(show_api=API_OPEN, ssr_mode=True)