hexgrad commited on
Commit
1609365
·
verified ·
1 Parent(s): d82d4c2

Delete istftnet.py

Browse files
Files changed (1) hide show
  1. istftnet.py +0 -523
istftnet.py DELETED
@@ -1,523 +0,0 @@
1
- # https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
2
- from scipy.signal import get_window
3
- from torch.nn import Conv1d, ConvTranspose1d
4
- from torch.nn.utils import weight_norm, remove_weight_norm
5
- import numpy as np
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
-
10
- # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
11
- def init_weights(m, mean=0.0, std=0.01):
12
- classname = m.__class__.__name__
13
- if classname.find("Conv") != -1:
14
- m.weight.data.normal_(mean, std)
15
-
16
- def get_padding(kernel_size, dilation=1):
17
- return int((kernel_size*dilation - dilation)/2)
18
-
19
- LRELU_SLOPE = 0.1
20
-
21
- class AdaIN1d(nn.Module):
22
- def __init__(self, style_dim, num_features):
23
- super().__init__()
24
- self.norm = nn.InstanceNorm1d(num_features, affine=False)
25
- self.fc = nn.Linear(style_dim, num_features*2)
26
-
27
- def forward(self, x, s):
28
- h = self.fc(s)
29
- h = h.view(h.size(0), h.size(1), 1)
30
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
31
- return (1 + gamma) * self.norm(x) + beta
32
-
33
- class AdaINResBlock1(torch.nn.Module):
34
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
35
- super(AdaINResBlock1, self).__init__()
36
- self.convs1 = nn.ModuleList([
37
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
38
- padding=get_padding(kernel_size, dilation[0]))),
39
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
40
- padding=get_padding(kernel_size, dilation[1]))),
41
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
42
- padding=get_padding(kernel_size, dilation[2])))
43
- ])
44
- self.convs1.apply(init_weights)
45
-
46
- self.convs2 = nn.ModuleList([
47
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
48
- padding=get_padding(kernel_size, 1))),
49
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
50
- padding=get_padding(kernel_size, 1))),
51
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
52
- padding=get_padding(kernel_size, 1)))
53
- ])
54
- self.convs2.apply(init_weights)
55
-
56
- self.adain1 = nn.ModuleList([
57
- AdaIN1d(style_dim, channels),
58
- AdaIN1d(style_dim, channels),
59
- AdaIN1d(style_dim, channels),
60
- ])
61
-
62
- self.adain2 = nn.ModuleList([
63
- AdaIN1d(style_dim, channels),
64
- AdaIN1d(style_dim, channels),
65
- AdaIN1d(style_dim, channels),
66
- ])
67
-
68
- self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
69
- self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
70
-
71
-
72
- def forward(self, x, s):
73
- for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
74
- xt = n1(x, s)
75
- xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
76
- xt = c1(xt)
77
- xt = n2(xt, s)
78
- xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
79
- xt = c2(xt)
80
- x = xt + x
81
- return x
82
-
83
- def remove_weight_norm(self):
84
- for l in self.convs1:
85
- remove_weight_norm(l)
86
- for l in self.convs2:
87
- remove_weight_norm(l)
88
-
89
- class TorchSTFT(torch.nn.Module):
90
- def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
91
- super().__init__()
92
- self.filter_length = filter_length
93
- self.hop_length = hop_length
94
- self.win_length = win_length
95
- self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
96
-
97
- def transform(self, input_data):
98
- forward_transform = torch.stft(
99
- input_data,
100
- self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
101
- return_complex=True)
102
-
103
- return torch.abs(forward_transform), torch.angle(forward_transform)
104
-
105
- def inverse(self, magnitude, phase):
106
- inverse_transform = torch.istft(
107
- magnitude * torch.exp(phase * 1j),
108
- self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
109
-
110
- return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
111
-
112
- def forward(self, input_data):
113
- self.magnitude, self.phase = self.transform(input_data)
114
- reconstruction = self.inverse(self.magnitude, self.phase)
115
- return reconstruction
116
-
117
- class SineGen(torch.nn.Module):
118
- """ Definition of sine generator
119
- SineGen(samp_rate, harmonic_num = 0,
120
- sine_amp = 0.1, noise_std = 0.003,
121
- voiced_threshold = 0,
122
- flag_for_pulse=False)
123
- samp_rate: sampling rate in Hz
124
- harmonic_num: number of harmonic overtones (default 0)
125
- sine_amp: amplitude of sine-wavefrom (default 0.1)
126
- noise_std: std of Gaussian noise (default 0.003)
127
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
128
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
129
- Note: when flag_for_pulse is True, the first time step of a voiced
130
- segment is always sin(np.pi) or cos(0)
131
- """
132
-
133
- def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
134
- sine_amp=0.1, noise_std=0.003,
135
- voiced_threshold=0,
136
- flag_for_pulse=False):
137
- super(SineGen, self).__init__()
138
- self.sine_amp = sine_amp
139
- self.noise_std = noise_std
140
- self.harmonic_num = harmonic_num
141
- self.dim = self.harmonic_num + 1
142
- self.sampling_rate = samp_rate
143
- self.voiced_threshold = voiced_threshold
144
- self.flag_for_pulse = flag_for_pulse
145
- self.upsample_scale = upsample_scale
146
-
147
- def _f02uv(self, f0):
148
- # generate uv signal
149
- uv = (f0 > self.voiced_threshold).type(torch.float32)
150
- return uv
151
-
152
- def _f02sine(self, f0_values):
153
- """ f0_values: (batchsize, length, dim)
154
- where dim indicates fundamental tone and overtones
155
- """
156
- # convert to F0 in rad. The interger part n can be ignored
157
- # because 2 * np.pi * n doesn't affect phase
158
- rad_values = (f0_values / self.sampling_rate) % 1
159
-
160
- # initial phase noise (no noise for fundamental component)
161
- rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
162
- device=f0_values.device)
163
- rand_ini[:, 0] = 0
164
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
165
-
166
- # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
167
- if not self.flag_for_pulse:
168
- # # for normal case
169
-
170
- # # To prevent torch.cumsum numerical overflow,
171
- # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
172
- # # Buffer tmp_over_one_idx indicates the time step to add -1.
173
- # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
174
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
175
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
176
- # cumsum_shift = torch.zeros_like(rad_values)
177
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
178
-
179
- # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
180
- rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
181
- scale_factor=1/self.upsample_scale,
182
- mode="linear").transpose(1, 2)
183
-
184
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
185
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
186
- # cumsum_shift = torch.zeros_like(rad_values)
187
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
188
-
189
- phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
190
- phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
191
- scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
192
- sines = torch.sin(phase)
193
-
194
- else:
195
- # If necessary, make sure that the first time step of every
196
- # voiced segments is sin(pi) or cos(0)
197
- # This is used for pulse-train generation
198
-
199
- # identify the last time step in unvoiced segments
200
- uv = self._f02uv(f0_values)
201
- uv_1 = torch.roll(uv, shifts=-1, dims=1)
202
- uv_1[:, -1, :] = 1
203
- u_loc = (uv < 1) * (uv_1 > 0)
204
-
205
- # get the instantanouse phase
206
- tmp_cumsum = torch.cumsum(rad_values, dim=1)
207
- # different batch needs to be processed differently
208
- for idx in range(f0_values.shape[0]):
209
- temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
210
- temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
211
- # stores the accumulation of i.phase within
212
- # each voiced segments
213
- tmp_cumsum[idx, :, :] = 0
214
- tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
215
-
216
- # rad_values - tmp_cumsum: remove the accumulation of i.phase
217
- # within the previous voiced segment.
218
- i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
219
-
220
- # get the sines
221
- sines = torch.cos(i_phase * 2 * np.pi)
222
- return sines
223
-
224
- def forward(self, f0):
225
- """ sine_tensor, uv = forward(f0)
226
- input F0: tensor(batchsize=1, length, dim=1)
227
- f0 for unvoiced steps should be 0
228
- output sine_tensor: tensor(batchsize=1, length, dim)
229
- output uv: tensor(batchsize=1, length, 1)
230
- """
231
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
232
- device=f0.device)
233
- # fundamental component
234
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
235
-
236
- # generate sine waveforms
237
- sine_waves = self._f02sine(fn) * self.sine_amp
238
-
239
- # generate uv signal
240
- # uv = torch.ones(f0.shape)
241
- # uv = uv * (f0 > self.voiced_threshold)
242
- uv = self._f02uv(f0)
243
-
244
- # noise: for unvoiced should be similar to sine_amp
245
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
246
- # . for voiced regions is self.noise_std
247
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
248
- noise = noise_amp * torch.randn_like(sine_waves)
249
-
250
- # first: set the unvoiced part to 0 by uv
251
- # then: additive noise
252
- sine_waves = sine_waves * uv + noise
253
- return sine_waves, uv, noise
254
-
255
-
256
- class SourceModuleHnNSF(torch.nn.Module):
257
- """ SourceModule for hn-nsf
258
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
259
- add_noise_std=0.003, voiced_threshod=0)
260
- sampling_rate: sampling_rate in Hz
261
- harmonic_num: number of harmonic above F0 (default: 0)
262
- sine_amp: amplitude of sine source signal (default: 0.1)
263
- add_noise_std: std of additive Gaussian noise (default: 0.003)
264
- note that amplitude of noise in unvoiced is decided
265
- by sine_amp
266
- voiced_threshold: threhold to set U/V given F0 (default: 0)
267
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
268
- F0_sampled (batchsize, length, 1)
269
- Sine_source (batchsize, length, 1)
270
- noise_source (batchsize, length 1)
271
- uv (batchsize, length, 1)
272
- """
273
-
274
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
275
- add_noise_std=0.003, voiced_threshod=0):
276
- super(SourceModuleHnNSF, self).__init__()
277
-
278
- self.sine_amp = sine_amp
279
- self.noise_std = add_noise_std
280
-
281
- # to produce sine waveforms
282
- self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
283
- sine_amp, add_noise_std, voiced_threshod)
284
-
285
- # to merge source harmonics into a single excitation
286
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
287
- self.l_tanh = torch.nn.Tanh()
288
-
289
- def forward(self, x):
290
- """
291
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
292
- F0_sampled (batchsize, length, 1)
293
- Sine_source (batchsize, length, 1)
294
- noise_source (batchsize, length 1)
295
- """
296
- # source for harmonic branch
297
- with torch.no_grad():
298
- sine_wavs, uv, _ = self.l_sin_gen(x)
299
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
300
-
301
- # source for noise branch, in the same shape as uv
302
- noise = torch.randn_like(uv) * self.sine_amp / 3
303
- return sine_merge, noise, uv
304
- def padDiff(x):
305
- return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
306
-
307
-
308
- class Generator(torch.nn.Module):
309
- def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
310
- super(Generator, self).__init__()
311
-
312
- self.num_kernels = len(resblock_kernel_sizes)
313
- self.num_upsamples = len(upsample_rates)
314
- resblock = AdaINResBlock1
315
-
316
- self.m_source = SourceModuleHnNSF(
317
- sampling_rate=24000,
318
- upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
319
- harmonic_num=8, voiced_threshod=10)
320
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
321
- self.noise_convs = nn.ModuleList()
322
- self.noise_res = nn.ModuleList()
323
-
324
- self.ups = nn.ModuleList()
325
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
326
- self.ups.append(weight_norm(
327
- ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
328
- k, u, padding=(k-u)//2)))
329
-
330
- self.resblocks = nn.ModuleList()
331
- for i in range(len(self.ups)):
332
- ch = upsample_initial_channel//(2**(i+1))
333
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
334
- self.resblocks.append(resblock(ch, k, d, style_dim))
335
-
336
- c_cur = upsample_initial_channel // (2 ** (i + 1))
337
-
338
- if i + 1 < len(upsample_rates): #
339
- stride_f0 = np.prod(upsample_rates[i + 1:])
340
- self.noise_convs.append(Conv1d(
341
- gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
342
- self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
343
- else:
344
- self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
345
- self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
346
-
347
-
348
- self.post_n_fft = gen_istft_n_fft
349
- self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
350
- self.ups.apply(init_weights)
351
- self.conv_post.apply(init_weights)
352
- self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
353
- self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
354
-
355
-
356
- def forward(self, x, s, f0):
357
- with torch.no_grad():
358
- f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
359
-
360
- har_source, noi_source, uv = self.m_source(f0)
361
- har_source = har_source.transpose(1, 2).squeeze(1)
362
- har_spec, har_phase = self.stft.transform(har_source)
363
- har = torch.cat([har_spec, har_phase], dim=1)
364
-
365
- for i in range(self.num_upsamples):
366
- x = F.leaky_relu(x, LRELU_SLOPE)
367
- x_source = self.noise_convs[i](har)
368
- x_source = self.noise_res[i](x_source, s)
369
-
370
- x = self.ups[i](x)
371
- if i == self.num_upsamples - 1:
372
- x = self.reflection_pad(x)
373
-
374
- x = x + x_source
375
- xs = None
376
- for j in range(self.num_kernels):
377
- if xs is None:
378
- xs = self.resblocks[i*self.num_kernels+j](x, s)
379
- else:
380
- xs += self.resblocks[i*self.num_kernels+j](x, s)
381
- x = xs / self.num_kernels
382
- x = F.leaky_relu(x)
383
- x = self.conv_post(x)
384
- spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
385
- phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
386
- return self.stft.inverse(spec, phase)
387
-
388
- def fw_phase(self, x, s):
389
- for i in range(self.num_upsamples):
390
- x = F.leaky_relu(x, LRELU_SLOPE)
391
- x = self.ups[i](x)
392
- xs = None
393
- for j in range(self.num_kernels):
394
- if xs is None:
395
- xs = self.resblocks[i*self.num_kernels+j](x, s)
396
- else:
397
- xs += self.resblocks[i*self.num_kernels+j](x, s)
398
- x = xs / self.num_kernels
399
- x = F.leaky_relu(x)
400
- x = self.reflection_pad(x)
401
- x = self.conv_post(x)
402
- spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
403
- phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
404
- return spec, phase
405
-
406
- def remove_weight_norm(self):
407
- print('Removing weight norm...')
408
- for l in self.ups:
409
- remove_weight_norm(l)
410
- for l in self.resblocks:
411
- l.remove_weight_norm()
412
- remove_weight_norm(self.conv_pre)
413
- remove_weight_norm(self.conv_post)
414
-
415
-
416
- class AdainResBlk1d(nn.Module):
417
- def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
418
- upsample='none', dropout_p=0.0):
419
- super().__init__()
420
- self.actv = actv
421
- self.upsample_type = upsample
422
- self.upsample = UpSample1d(upsample)
423
- self.learned_sc = dim_in != dim_out
424
- self._build_weights(dim_in, dim_out, style_dim)
425
- self.dropout = nn.Dropout(dropout_p)
426
-
427
- if upsample == 'none':
428
- self.pool = nn.Identity()
429
- else:
430
- self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
431
-
432
-
433
- def _build_weights(self, dim_in, dim_out, style_dim):
434
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
435
- self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
436
- self.norm1 = AdaIN1d(style_dim, dim_in)
437
- self.norm2 = AdaIN1d(style_dim, dim_out)
438
- if self.learned_sc:
439
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
440
-
441
- def _shortcut(self, x):
442
- x = self.upsample(x)
443
- if self.learned_sc:
444
- x = self.conv1x1(x)
445
- return x
446
-
447
- def _residual(self, x, s):
448
- x = self.norm1(x, s)
449
- x = self.actv(x)
450
- x = self.pool(x)
451
- x = self.conv1(self.dropout(x))
452
- x = self.norm2(x, s)
453
- x = self.actv(x)
454
- x = self.conv2(self.dropout(x))
455
- return x
456
-
457
- def forward(self, x, s):
458
- out = self._residual(x, s)
459
- out = (out + self._shortcut(x)) / np.sqrt(2)
460
- return out
461
-
462
- class UpSample1d(nn.Module):
463
- def __init__(self, layer_type):
464
- super().__init__()
465
- self.layer_type = layer_type
466
-
467
- def forward(self, x):
468
- if self.layer_type == 'none':
469
- return x
470
- else:
471
- return F.interpolate(x, scale_factor=2, mode='nearest')
472
-
473
- class Decoder(nn.Module):
474
- def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
475
- resblock_kernel_sizes = [3,7,11],
476
- upsample_rates = [10, 6],
477
- upsample_initial_channel=512,
478
- resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
479
- upsample_kernel_sizes=[20, 12],
480
- gen_istft_n_fft=20, gen_istft_hop_size=5):
481
- super().__init__()
482
-
483
- self.decode = nn.ModuleList()
484
-
485
- self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
486
-
487
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
488
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
489
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
490
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
491
-
492
- self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
493
-
494
- self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
495
-
496
- self.asr_res = nn.Sequential(
497
- weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
498
- )
499
-
500
-
501
- self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
502
- upsample_initial_channel, resblock_dilation_sizes,
503
- upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
504
-
505
- def forward(self, asr, F0_curve, N, s):
506
- F0 = self.F0_conv(F0_curve.unsqueeze(1))
507
- N = self.N_conv(N.unsqueeze(1))
508
-
509
- x = torch.cat([asr, F0, N], axis=1)
510
- x = self.encode(x, s)
511
-
512
- asr_res = self.asr_res(asr)
513
-
514
- res = True
515
- for block in self.decode:
516
- if res:
517
- x = torch.cat([x, asr_res, F0, N], axis=1)
518
- x = block(x, s)
519
- if block.upsample_type != "none":
520
- res = False
521
-
522
- x = self.generator(x, s, F0_curve)
523
- return x