File size: 7,436 Bytes
41b5e7a
 
e9b69d2
 
 
 
41b5e7a
 
 
 
e9b69d2
d989475
c8ab947
41b5e7a
 
 
 
d989475
41b5e7a
 
 
 
 
 
 
 
 
 
 
d989475
41b5e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8ab947
e9b69d2
41b5e7a
e9b69d2
 
 
 
41b5e7a
e9b69d2
 
c1057fc
41b5e7a
 
 
 
 
 
 
 
c1057fc
 
 
41b5e7a
 
 
c1057fc
 
 
 
41b5e7a
 
 
 
c1057fc
 
 
41b5e7a
c1057fc
41b5e7a
b7cfba0
41b5e7a
 
b7cfba0
41b5e7a
 
2dbd805
41b5e7a
89c0cd0
41b5e7a
 
015d0ec
41b5e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7cfba0
41b5e7a
 
 
 
 
7a398c4
41b5e7a
b79287b
41b5e7a
7c600ad
 
41b5e7a
7b74eba
41b5e7a
7b74eba
a385437
7b74eba
 
41b5e7a
7b74eba
 
41b5e7a
 
 
7c600ad
41b5e7a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch

IS_DUPLICATE = not os.getenv('SPACE_ID', '').startswith('hexgrad/')
N_MAX_CHARS = None if IS_DUPLICATE else 5000
S_MAX_CHARS = '∞' if IS_DUPLICATE else str(N_MAX_CHARS)

CUDA_AVAILABLE = torch.cuda.is_available()

models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kˈQkəɹQ'

@spaces.GPU(duration=10)
def forward_gpu(ps, ref_s, speed):
    return models[True](ps, ref_s, speed)

def return_audio_ps(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if N_MAX_CHARS is None else text.strip()[:N_MAX_CHARS]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        return (24000, audio.numpy()), ps
    return None, ''

# Arena API
def predict(text, voice='af_heart', speed=1):
    return return_audio_ps(text, voice, speed, use_gpu=False)[0]

def return_ps(text, voice='af_heart'):
    pipeline = pipelines[voice[0]]
    for _, ps, _ in pipeline(text, voice):
        return ps
    return ''

def yield_audio(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
    text = text if N_MAX_CHARS is None else text.strip()[:N_MAX_CHARS]
    pipeline = pipelines[voice[0]]
    pack = pipeline.load_voice(voice)
    use_gpu = use_gpu and CUDA_AVAILABLE
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps)-1]
        try:
            if use_gpu:
                audio = forward_gpu(ps, ref_s, speed)
            else:
                audio = models[False](ps, ref_s, speed)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Switching to CPU')
                audio = models[False](ps, ref_s, speed)
            else:
                raise gr.Error(e)
        yield 24000, audio.numpy()

random_texts = {}
for lang in ['en']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    lang = dict(a='en', b='en')[voice[0]]
    return random.choice(random_texts[lang])

CHOICES = {
'🇺🇸 🚺 Heart ❤️': 'af_heart',
'🇺🇸 🚺 Bella 🔥': 'af_bella',
'🇺🇸 🚺 Nicole 🎧': 'af_nicole',
'🇺🇸 🚺 Aoede': 'af_aoede',
'🇺🇸 🚺 Kore': 'af_kore',
'🇺🇸 🚺 Sarah': 'af_sarah',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚹 Michael': 'am_michael',
'🇺🇸 🚹 Fenrir': 'am_fenrir',
'🇺🇸 🚹 Puck': 'am_puck',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇺🇸 🚹 Santa': 'am_santa',
'🇺🇸 🚹 Adam': 'am_adam',
'🇬🇧 🚺 Emma': 'bf_emma',
'🇬🇧 🚺 Isabella': 'bf_isabella',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇬🇧 🚹 Daniel': 'bm_daniel',
}
for v in CHOICES.values():
    pipelines[v[0]].load_voice(v)

TOKEN_NOTE = '''
💡 You can customize pronunciation like this: `[Kokoro](/kˈOkəɹO/)`

⬇️ Lower stress `[1 level](-1)` or `[2 levels](-2)`

⬆️ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
'''

with gr.Blocks() as generate_tab:
    out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
    generate_btn = gr.Button('Generate', variant='primary')
    with gr.Accordion('Output Tokens', open=False):
        out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
        tokenize_btn = gr.Button('Tokenize', variant='secondary')
        gr.Markdown(TOKEN_NOTE)
        predict_btn = gr.Button('Predict', variant='secondary', visible=False)

STREAM_NOTE = ['⚠️ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
if N_MAX_CHARS is not None:
    STREAM_NOTE.append(f'✂️ Each stream is capped at {N_MAX_CHARS} characters.')
    STREAM_NOTE.append('🚀 Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)

with gr.Blocks() as stream_tab:
    out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
    with gr.Row():
        stream_btn = gr.Button('Stream', variant='primary')
        stop_btn = gr.Button('Stop', variant='stop')
    with gr.Accordion('Note', open=True):
        gr.Markdown(STREAM_NOTE)
        gr.DuplicateButton()

with gr.Blocks() as app:
    with gr.Row():
        gr.Markdown('[***Kokoro*** **is an open-weight TTS model with 82 million parameters.**](https://hf.co/hexgrad/Kokoro-82M)', container=True)
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info=f'Up to ~500 characters per Generate, or {S_MAX_CHARS} characters per Stream')
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is usually faster, but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
            random_btn = gr.Button('Random Text', variant='secondary')
            random_btn.click(get_random_text, inputs=[voice], outputs=[text])
        with gr.Column():
            gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
    generate_btn.click(return_audio_ps, inputs=[text, voice, speed, use_gpu], outputs=[out_audio, out_ps])
    tokenize_btn.click(return_ps, inputs=[text, voice], outputs=[out_ps])
    stream_event = stream_btn.click(yield_audio, inputs=[text, voice, speed, use_gpu], outputs=[out_stream])
    stop_btn.click(fn=None, cancels=stream_event)
    predict_btn.click(predict, inputs=[text, voice, speed], outputs=[out_audio])

if IS_DUPLICATE:
    app.queue(api_open=True).launch(show_api=True, ssr_mode=True)
else:
    app.queue(api_open=False).load(api_name=False).launch(show_api=False, ssr_mode=True)