heuue commited on
Commit
4ce7487
·
verified ·
1 Parent(s): 388caa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -32
app.py CHANGED
@@ -4,44 +4,22 @@ import torch
4
  from torchvision import transforms
5
  from PIL import Image
6
  import torch.nn.functional as F
 
7
 
8
- # 加载模型
9
- class SimpleModel(torch.nn.Module):
10
- def __init__(self, num_classes=3):
11
- super(SimpleModel, self).__init__()
12
- self.fc = torch.nn.Linear(3 * 224 * 224, num_classes)
13
-
14
- def forward(self, x):
15
- x = x.view(x.size(0), -1)
16
- return self.fc(x)
17
-
18
- # 初始化模型并加载权重
19
- model = SimpleModel(num_classes=3)
20
- model_path = "model.pth"
21
- model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
22
- model.eval()
23
-
24
-
25
- def preprocess(image: Image.Image):
26
- transform = transforms.Compose([
27
- transforms.Resize((224, 224)),
28
- transforms.ToTensor(),
29
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
30
- ])
31
- return transform(image).unsqueeze(0)
32
 
 
 
33
 
34
- def classify_image(image: Image.Image):
35
- input_tensor = preprocess(image)
36
- with torch.no_grad():
37
- output = model(input_tensor)
38
- probabilities = F.softmax(output[0], dim=0)
39
- top_class = probabilities.argmax().item()
40
- return f"Predicted: {class_names[top_class]} (Confidence: {probabilities[top_class]:.2f})"
41
 
42
 
43
  app = gr.Interface(
44
- fn=classify_image, # 推理函数
45
  inputs=gr.Image(type="pil"), # 接收输入图片,返回 PIL 格式
46
  outputs="text", # 输出分类结果
47
  title="Image Classification with PyTorch",
 
4
  from torchvision import transforms
5
  from PIL import Image
6
  import torch.nn.functional as F
7
+ from ultralytics import YOLO
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # 加载模型
11
+ model = YOLO("nabird_det_ep3.pt")
12
 
13
+ def yolo_det(image: Image.Image):
14
+
15
+ output = model.predict(image, save=False)
16
+ print(output)
17
+
18
+ return output
 
19
 
20
 
21
  app = gr.Interface(
22
+ fn=yolo_det, # 推理函数
23
  inputs=gr.Image(type="pil"), # 接收输入图片,返回 PIL 格式
24
  outputs="text", # 输出分类结果
25
  title="Image Classification with PyTorch",