|
|
|
import gradio as gr |
|
import torch |
|
from torchvision import transforms |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from ultralytics import YOLO |
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
model = YOLO("nabird_det_ep3.pt") |
|
|
|
def detect_objects(image: Image.Image): |
|
|
|
image_np = np.array(image) |
|
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) |
|
|
|
results = model.predict(image_np, save=False) |
|
|
|
for result in results: |
|
for box in result.boxes: |
|
|
|
xyxy = box.xyxy[0].tolist() |
|
conf = box.conf[0].item() |
|
cls = int(box.cls[0].item()) |
|
class_name = model.names[cls] |
|
|
|
|
|
x1, y1, x2, y2 = map(int, xyxy) |
|
|
|
|
|
cv2.rectangle(image_np, (x1, y1), (x2, y2), color=(0, 255, 0), thickness=2) |
|
|
|
|
|
label = f"{class_name} {conf:.2f}" |
|
cv2.putText(image_np, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
|
|
|
|
image_with_boxes = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB) |
|
return Image.fromarray(image_with_boxes) |
|
|
|
example_image_paths = ["PC060715.jpg", "PC061030.jpg", "PC060806.jpg"] |
|
|
|
|
|
app = gr.Interface( |
|
fn=detect_objects, |
|
inputs=gr.Image(type="pil"), |
|
outputs=gr.Image(type="pil"), |
|
examples=example_image_paths, |
|
title="YOLO Object Detection", |
|
description="Upload an image to detect objects using YOLO." |
|
) |
|
|
|
app.launch() |
|
|