import gradio as gr import torch from torchvision import transforms from PIL import Image from timm import create_model import json with open('class_names.json', 'r') as json_file: class_mapping = json.load(json_file) # 加载模型 def load_model(model_path): model = create_model('resnet18', pretrained=False, num_classes=len(class_mapping)) model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) model.eval() return model model = load_model("res18_nabird555_acc596.pth") # 定义图像预处理 def preprocess_image(image): transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) return transform(image).unsqueeze(0) # 定义推理函数 def classify_image(image): image = preprocess_image(image) with torch.no_grad(): outputs = model(image) _, predicted_class = torch.max(outputs, 1) predicted_class_idx = predicted_class.item() predicted_class_name = class_mapping[str(predicted_class_idx)] return predicted_class_name # 创建 Gradio 接口 title = "Bird Species Classifier" description = "Upload an image of a bird, and the model will predict its species." interface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs="text", title=title, description=description, ) if __name__ == "__main__": interface.launch()