|
import pathlib |
|
|
|
import gradio as gr |
|
import open_clip |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model, _, transform = open_clip.create_model_and_transforms( |
|
"coca_ViT-L-14", |
|
pretrained="mscoco_finetuned_laion2B-s13B-b90k" |
|
) |
|
model.to(device) |
|
|
|
title="""<h1 align="center">CoCa: Contrastive Captioners</h1>""" |
|
description=( |
|
"""<br> An open source implementation of <strong>CoCa: Contrastive Captioners are Image-Text Foundation Models</strong> <a href=https://arxiv.org/abs/2205.01917>https://arxiv.org/abs/2205.01917.</a> |
|
<br> Built using <a href=https://github.com/mlfoundations/open_clip>open_clip</a> with an effort from <a href=https://laion.ai/>LAION</a>. |
|
<br> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<a href="https://huggingface.co/spaces/laion/CoCa?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>""" |
|
) |
|
|
|
def output_generate(image): |
|
im = transform(image).unsqueeze(0).to(device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
generated = model.generate(im, seq_len=20) |
|
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "") |
|
|
|
def inference_caption(image, decoding_method="Beam search", rep_penalty=1.2, top_p=0.5, min_seq_len=5, seq_len=20): |
|
im = transform(image).unsqueeze(0).to(device) |
|
generation_type = "beam_search" if decoding_method == "Beam search" else "top_p" |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
generated = model.generate( |
|
im, |
|
generation_type=generation_type, |
|
top_p=float(top_p), |
|
min_seq_len=min_seq_len, |
|
seq_len=seq_len, |
|
repetition_penalty=float(rep_penalty) |
|
) |
|
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "") |
|
|
|
paths = sorted(pathlib.Path("images").glob("*.jpg")) |
|
with gr.Blocks() as iface: |
|
state = gr.State([]) |
|
|
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(type="pil") |
|
|
|
|
|
sampling = gr.Radio( |
|
choices=["Beam search", "Nucleus sampling"], |
|
value="Beam search", |
|
label="Text Decoding Method", |
|
interactive=True, |
|
) |
|
|
|
rep_penalty = gr.Slider( |
|
minimum=1.0, |
|
maximum=5.0, |
|
value=1.0, |
|
step=0.5, |
|
interactive=True, |
|
label="Repeat Penalty (larger value prevents repetition)", |
|
) |
|
|
|
top_p = gr.Slider( |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
interactive=True, |
|
label="Top p (used with nucleus sampling)", |
|
) |
|
|
|
min_seq_len = gr.Number( |
|
value=5, label="Minimum Sequence Length", precision=0, interactive=True |
|
) |
|
|
|
seq_len = gr.Number( |
|
value=20, label="Maximum Sequence Length (has to higher than Minimum)", precision=0, interactive=True |
|
) |
|
|
|
with gr.Column(scale=1): |
|
|
|
with gr.Column(): |
|
caption_output = gr.Textbox(lines=1, label="Caption Output") |
|
caption_button = gr.Button( |
|
value="Caption it!", interactive=True, variant="primary" |
|
) |
|
caption_button.click( |
|
inference_caption, |
|
[ |
|
image_input, |
|
sampling, |
|
rep_penalty, |
|
top_p, |
|
min_seq_len, |
|
seq_len |
|
], |
|
[caption_output], |
|
) |
|
|
|
examples = gr.Examples( |
|
examples=[path.as_posix() for path in paths], |
|
inputs=[image_input], |
|
) |
|
iface.launch() |
|
|