|
import gradio as gr |
|
import open_clip |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model, _, transform = open_clip.create_model_and_transforms( |
|
"coca_ViT-L-14", |
|
pretrained="mscoco_finetuned_laion2B-s13B-b90k" |
|
) |
|
|
|
model.to(device) |
|
|
|
def output_generate(image): |
|
im = transform(image).unsqueeze(0).to(device) |
|
generated = model.generate(im, seq_len=20) |
|
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "") |
|
|
|
iface = gr.Interface(fn=output_generate, inputs=gr.Image(type="pil"), outputs="text") |
|
iface.launch() |