Spaces:
Runtime error
Runtime error
Henry Scheible
commited on
Commit
·
15ec046
1
Parent(s):
26f78d3
add examples
Browse files- app.py +6 -4
- examples/new_blank_image.png +0 -0
app.py
CHANGED
@@ -30,7 +30,8 @@ print("Loading resnet...")
|
|
30 |
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
31 |
hidden_state_size = model.fc.in_features
|
32 |
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
33 |
-
model.
|
|
|
34 |
model.to("cuda")
|
35 |
|
36 |
import gradio as gr
|
@@ -49,7 +50,7 @@ def count_barnacles(input_img, progress=gr.Progress()):
|
|
49 |
predicted_labels = torch.cat(predicted_labels_list)
|
50 |
x = int(math.sqrt(predicted_labels.shape[0]))
|
51 |
predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
52 |
-
label_img = predicted_labels[:, :, :1].
|
53 |
label_img -= label_img.min()
|
54 |
label_img /= label_img.max()
|
55 |
label_img = (label_img * 255).astype(np.uint8)
|
@@ -78,9 +79,10 @@ def count_barnacles(input_img, progress=gr.Progress()):
|
|
78 |
blank_img_copy = input_img.copy()
|
79 |
for x, y in points:
|
80 |
blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
|
81 |
-
return blank_img_copy, len(list(points))
|
82 |
|
83 |
|
84 |
demo = gr.Interface(count_barnacles, gr.Image(shape=(500, 500), type="numpy"),
|
85 |
-
outputs=[
|
|
|
86 |
demo.queue(concurrency_count=10).launch()
|
|
|
30 |
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
31 |
hidden_state_size = model.fc.in_features
|
32 |
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
33 |
+
model.to("cuda")
|
34 |
+
model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device("cuda")))
|
35 |
model.to("cuda")
|
36 |
|
37 |
import gradio as gr
|
|
|
50 |
predicted_labels = torch.cat(predicted_labels_list)
|
51 |
x = int(math.sqrt(predicted_labels.shape[0]))
|
52 |
predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
53 |
+
label_img = predicted_labels[:, :, :1].cuda().numpy()
|
54 |
label_img -= label_img.min()
|
55 |
label_img /= label_img.max()
|
56 |
label_img = (label_img * 255).astype(np.uint8)
|
|
|
79 |
blank_img_copy = input_img.copy()
|
80 |
for x, y in points:
|
81 |
blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
|
82 |
+
return blank_img_copy, int(len(list(points)))
|
83 |
|
84 |
|
85 |
demo = gr.Interface(count_barnacles, gr.Image(shape=(500, 500), type="numpy"),
|
86 |
+
outputs=["image", "number"],
|
87 |
+
examples="examples")
|
88 |
demo.queue(concurrency_count=10).launch()
|
examples/new_blank_image.png
ADDED
![]() |