Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
# Load the tokenizer and model
|
7 |
+
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-large-p1')
|
8 |
+
model = BertForSequenceClassification.from_pretrained("hendri/sentiment")
|
9 |
+
|
10 |
+
labels = ["LABEL_0", "LABEL_1", "LABEL_2"]
|
11 |
+
|
12 |
+
# Map these to your actual labels:
|
13 |
+
label_mapping = {
|
14 |
+
"LABEL_0": "positive",
|
15 |
+
"LABEL_1": "neutral",
|
16 |
+
"LABEL_2": "negative"
|
17 |
+
}
|
18 |
+
# Define a function to process user input and return predictions
|
19 |
+
def classify_emotion(text):
|
20 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
logits = outputs.logits
|
24 |
+
probabilities = F.softmax(logits, dim=-1)
|
25 |
+
predictions = {label_mapping[labels[i]]: round(float(prob), 4) for i, prob in enumerate(probabilities[0])}
|
26 |
+
return predictions
|
27 |
+
|
28 |
+
# Create the Gradio interface
|
29 |
+
interface = gr.Interface(
|
30 |
+
fn=classify_emotion,
|
31 |
+
inputs=gr.Textbox(label="Enter Text for Sentiment Analysis"),
|
32 |
+
outputs=gr.Label(label="Predicted Sentiment"),
|
33 |
+
title="Sentiment Analysis",
|
34 |
+
description="This application uses an IndoBERT model fine-tuned for sentiment analysis. Enter a sentence (bahasa Indonesia) to see the predicted sentiment and their probabilities."
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the Gradio interface
|
38 |
+
interface.launch()
|