Spaces:
Sleeping
Sleeping
Disable rereading
Browse files
app.py
CHANGED
|
@@ -83,14 +83,12 @@ app.layout = html.Div(
|
|
| 83 |
children="Sessions Observatory",
|
| 84 |
className="section-header",
|
| 85 |
),
|
| 86 |
-
# dcc.Graph(id="bubble-chart", style={"height": "80vh"}),
|
| 87 |
dcc.Graph(
|
| 88 |
id="bubble-chart",
|
| 89 |
style={"height": "calc(100% - 154px)"},
|
| 90 |
-
),
|
| 91 |
html.Div(
|
| 92 |
[
|
| 93 |
-
# Only keep Color by
|
| 94 |
html.Div(
|
| 95 |
[
|
| 96 |
html.Div(
|
|
@@ -103,7 +101,6 @@ app.layout = html.Div(
|
|
| 103 |
],
|
| 104 |
className="control-labels-row",
|
| 105 |
),
|
| 106 |
-
# Only keep Color by options
|
| 107 |
html.Div(
|
| 108 |
[
|
| 109 |
html.Div(
|
|
@@ -188,10 +185,9 @@ app.layout = html.Div(
|
|
| 188 |
html.I(
|
| 189 |
className="fas fa-info-circle",
|
| 190 |
title="Root cause detection is experimental and may require manual review since it is generated by AI models. Root causes are only shown in clusters with identifiable root causes.",
|
| 191 |
-
# Added title for info icon
|
| 192 |
style={
|
| 193 |
"marginLeft": "0.2rem",
|
| 194 |
-
"color": "#6c757d",
|
| 195 |
"fontSize": "0.9rem",
|
| 196 |
"cursor": "pointer",
|
| 197 |
"verticalAlign": "middle",
|
|
@@ -206,9 +202,7 @@ app.layout = html.Div(
|
|
| 206 |
),
|
| 207 |
],
|
| 208 |
id="root-causes-section",
|
| 209 |
-
style={
|
| 210 |
-
"display": "none"
|
| 211 |
-
}, # Initially hidden
|
| 212 |
),
|
| 213 |
# Added Tags section
|
| 214 |
html.Div(
|
|
@@ -223,9 +217,7 @@ app.layout = html.Div(
|
|
| 223 |
),
|
| 224 |
],
|
| 225 |
id="tags-section",
|
| 226 |
-
style={
|
| 227 |
-
"display": "none"
|
| 228 |
-
}, # Initially hidden
|
| 229 |
),
|
| 230 |
],
|
| 231 |
className="details-section",
|
|
@@ -276,7 +268,7 @@ app.layout = html.Div(
|
|
| 276 |
),
|
| 277 |
html.H3("No topic selected"),
|
| 278 |
html.P(
|
| 279 |
-
"Click
|
| 280 |
),
|
| 281 |
],
|
| 282 |
className="no-selection-message",
|
|
@@ -395,6 +387,8 @@ app.layout = html.Div(
|
|
| 395 |
),
|
| 396 |
# Store the processed data
|
| 397 |
dcc.Store(id="stored-data"),
|
|
|
|
|
|
|
| 398 |
# Store the current selected topic for dialogs modal
|
| 399 |
dcc.Store(id="selected-topic-store"),
|
| 400 |
# Store the current selected root cause for root cause modal
|
|
@@ -403,7 +397,7 @@ app.layout = html.Div(
|
|
| 403 |
className="app-container",
|
| 404 |
)
|
| 405 |
|
| 406 |
-
# Define CSS for the app
|
| 407 |
app.index_string = """
|
| 408 |
<!DOCTYPE html>
|
| 409 |
<html>
|
|
@@ -1227,10 +1221,10 @@ app.index_string = """
|
|
| 1227 |
)
|
| 1228 |
def update_topic_distribution_header(data):
|
| 1229 |
if not data:
|
| 1230 |
-
return "Sessions Observatory"
|
| 1231 |
|
| 1232 |
df = pd.DataFrame(data)
|
| 1233 |
-
total_dialogs = df["count"].sum()
|
| 1234 |
return f"Sessions Observatory ({total_dialogs} dialogs)"
|
| 1235 |
|
| 1236 |
|
|
@@ -1238,8 +1232,9 @@ def update_topic_distribution_header(data):
|
|
| 1238 |
@callback(
|
| 1239 |
[
|
| 1240 |
Output("stored-data", "data"),
|
|
|
|
| 1241 |
Output("upload-status", "children"),
|
| 1242 |
-
Output("upload-status", "style"),
|
| 1243 |
Output("main-content", "style"),
|
| 1244 |
],
|
| 1245 |
[Input("upload-data", "contents")],
|
|
@@ -1247,91 +1242,81 @@ def update_topic_distribution_header(data):
|
|
| 1247 |
)
|
| 1248 |
def process_upload(contents, filename):
|
| 1249 |
if contents is None:
|
| 1250 |
-
return None, "", {"display": "none"}, {"display": "none"}
|
| 1251 |
|
| 1252 |
try:
|
| 1253 |
-
# Parse uploaded file
|
| 1254 |
content_type, content_string = contents.split(",")
|
| 1255 |
decoded = base64.b64decode(content_string)
|
| 1256 |
|
| 1257 |
if "csv" in filename.lower():
|
| 1258 |
-
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
|
| 1259 |
elif "xls" in filename.lower():
|
| 1260 |
-
df = pd.read_excel(io.BytesIO(decoded))
|
| 1261 |
-
|
| 1262 |
-
|
| 1263 |
-
|
| 1264 |
-
|
| 1265 |
-
|
| 1266 |
-
|
| 1267 |
-
|
| 1268 |
-
|
| 1269 |
-
"
|
|
|
|
| 1270 |
)
|
| 1271 |
-
for topic in df["deduplicated_topic_name"].unique():
|
| 1272 |
-
subclusters = (
|
| 1273 |
-
df[df["deduplicated_topic_name"] == topic]["root_cause_subcluster"]
|
| 1274 |
-
.dropna()
|
| 1275 |
-
.unique()
|
| 1276 |
-
)
|
| 1277 |
-
print(f"- {topic}:")
|
| 1278 |
-
for sub in subclusters:
|
| 1279 |
-
print(f" - {sub}")
|
| 1280 |
-
print()
|
| 1281 |
-
# --- End of DEBUG ---
|
| 1282 |
|
| 1283 |
-
# Hardcoded flag to exclude 'Unclustered' topics
|
| 1284 |
EXCLUDE_UNCLUSTERED = True
|
| 1285 |
if EXCLUDE_UNCLUSTERED and "deduplicated_topic_name" in df.columns:
|
| 1286 |
df = df[df["deduplicated_topic_name"] != "Unclustered"].copy()
|
| 1287 |
-
# If we strip leading and trailing `"` or `'` from the topic name here, then
|
| 1288 |
-
# we will have a problem with the deduplicated names, as they will not match the
|
| 1289 |
-
# original topic names in the dataset.
|
| 1290 |
-
# Better do it in the first script.
|
| 1291 |
else:
|
| 1292 |
return (
|
|
|
|
| 1293 |
None,
|
| 1294 |
html.Div(
|
| 1295 |
-
[
|
| 1296 |
-
html.I(
|
| 1297 |
-
className="fas fa-exclamation-circle",
|
| 1298 |
-
style={"color": "var(--destructive)", "marginRight": "8px"},
|
| 1299 |
-
),
|
| 1300 |
-
"Please upload a CSV or Excel file.",
|
| 1301 |
-
],
|
| 1302 |
style={"color": "var(--destructive)"},
|
| 1303 |
),
|
| 1304 |
-
{"display": "block"},
|
| 1305 |
{"display": "none"},
|
| 1306 |
)
|
| 1307 |
|
| 1308 |
-
#
|
| 1309 |
topic_stats = analyze_topics(df)
|
| 1310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1311 |
return (
|
| 1312 |
topic_stats.to_dict("records"),
|
|
|
|
| 1313 |
html.Div(
|
| 1314 |
[
|
| 1315 |
html.I(
|
| 1316 |
className="fas fa-check-circle",
|
| 1317 |
-
style={
|
| 1318 |
-
"color": "hsl(142.1, 76.2%, 36.3%)",
|
| 1319 |
-
"marginRight": "8px",
|
| 1320 |
-
},
|
| 1321 |
),
|
| 1322 |
f'Successfully uploaded "{filename}"',
|
| 1323 |
],
|
| 1324 |
style={"color": "hsl(142.1, 76.2%, 36.3%)"},
|
| 1325 |
),
|
| 1326 |
-
{"display": "block"},
|
| 1327 |
-
{
|
| 1328 |
-
"display": "block",
|
| 1329 |
-
"height": "calc(100vh - 40px)",
|
| 1330 |
-
}, # Make visible after successful upload
|
| 1331 |
)
|
| 1332 |
|
| 1333 |
except Exception as e:
|
| 1334 |
return (
|
|
|
|
| 1335 |
None,
|
| 1336 |
html.Div(
|
| 1337 |
[
|
|
@@ -1339,22 +1324,18 @@ def process_upload(contents, filename):
|
|
| 1339 |
className="fas fa-exclamation-triangle",
|
| 1340 |
style={"color": "var(--destructive)", "marginRight": "8px"},
|
| 1341 |
),
|
| 1342 |
-
f"Error
|
| 1343 |
],
|
| 1344 |
style={"color": "var(--destructive)"},
|
| 1345 |
),
|
| 1346 |
-
{"display": "block"},
|
| 1347 |
{"display": "none"},
|
| 1348 |
)
|
| 1349 |
|
| 1350 |
|
| 1351 |
# Function to analyze the topics and create statistics
|
| 1352 |
def analyze_topics(df):
|
| 1353 |
-
# Group by topic name and calculate metrics
|
| 1354 |
topic_stats = (
|
| 1355 |
-
# IMPORTANT!
|
| 1356 |
-
# As deduplicated_topic_name, we have either the deduplicated names (if enabled by the process),
|
| 1357 |
-
# either the kmeans_reclustered name (where available) and the ClusterNames.
|
| 1358 |
df.groupby("deduplicated_topic_name")
|
| 1359 |
.agg(
|
| 1360 |
count=("id", "count"),
|
|
@@ -1364,204 +1345,94 @@ def analyze_topics(df):
|
|
| 1364 |
)
|
| 1365 |
.reset_index()
|
| 1366 |
)
|
| 1367 |
-
|
| 1368 |
-
|
| 1369 |
-
topic_stats["
|
| 1370 |
-
topic_stats["negative_count"] / topic_stats["count"] * 100
|
| 1371 |
-
).round(1)
|
| 1372 |
-
topic_stats["unresolved_rate"] = (
|
| 1373 |
-
topic_stats["unresolved_count"] / topic_stats["count"] * 100
|
| 1374 |
-
).round(1)
|
| 1375 |
-
topic_stats["urgent_rate"] = (
|
| 1376 |
-
topic_stats["urgent_count"] / topic_stats["count"] * 100
|
| 1377 |
-
).round(1)
|
| 1378 |
-
|
| 1379 |
-
# Apply binned layout
|
| 1380 |
topic_stats = apply_binned_layout(topic_stats)
|
| 1381 |
-
|
| 1382 |
return topic_stats
|
| 1383 |
|
| 1384 |
|
| 1385 |
-
# New binned layout function
|
| 1386 |
-
|
| 1387 |
-
|
| 1388 |
def apply_binned_layout(df, padding=0, bin_config=None, max_items_per_row=6):
|
| 1389 |
-
"""
|
| 1390 |
-
Apply a binned layout where bubbles are grouped into rows based on dialog count.
|
| 1391 |
-
Bubbles in each row will be centered horizontally.
|
| 1392 |
-
|
| 1393 |
-
Args:
|
| 1394 |
-
df: DataFrame containing the topic data
|
| 1395 |
-
padding: Padding from edges as percentage
|
| 1396 |
-
bin_config: List of tuples defining bin ranges and descriptions.
|
| 1397 |
-
Example: [(300, None, "300+ dialogs"), (250, 299, "250-299 dialogs"), ...]
|
| 1398 |
-
max_items_per_row: Maximum number of items to display in a single row
|
| 1399 |
-
|
| 1400 |
-
Returns:
|
| 1401 |
-
DataFrame with updated x, y positions
|
| 1402 |
-
"""
|
| 1403 |
-
# Create a copy of the dataframe to avoid modifying the original
|
| 1404 |
df_sorted = df.copy()
|
| 1405 |
-
|
| 1406 |
-
# Default bin configuration if none is provided
|
| 1407 |
-
# 8 rows x 6 bubbles is usually good
|
| 1408 |
if bin_config is None:
|
| 1409 |
bin_config = [
|
| 1410 |
-
(100, None, "100+ dialogs"),
|
| 1411 |
-
(
|
| 1412 |
-
(
|
| 1413 |
-
(
|
| 1414 |
-
(7, 8, "7-8 dialogs"),
|
| 1415 |
-
(5, 7, "5-6 dialogs"),
|
| 1416 |
-
(4, 4, "4 dialogs"),
|
| 1417 |
-
(0, 3, "0-3 dialogs"),
|
| 1418 |
]
|
| 1419 |
-
|
| 1420 |
-
# Generate bin descriptions and conditions dynamically
|
| 1421 |
bin_descriptions = {}
|
| 1422 |
conditions = []
|
| 1423 |
bin_values = []
|
| 1424 |
-
|
| 1425 |
for i, (lower, upper, description) in enumerate(bin_config):
|
| 1426 |
bin_name = f"Bin {i + 1}"
|
| 1427 |
bin_descriptions[bin_name] = description
|
| 1428 |
bin_values.append(bin_name)
|
| 1429 |
-
|
| 1430 |
-
if upper is None: # No upper limit
|
| 1431 |
conditions.append(df_sorted["count"] >= lower)
|
| 1432 |
else:
|
| 1433 |
-
conditions.append(
|
| 1434 |
-
|
| 1435 |
-
)
|
| 1436 |
-
|
| 1437 |
-
# Apply the conditions to create the bin column
|
| 1438 |
-
df_sorted["bin"] = np.select(conditions, bin_values, default="Bin 8")
|
| 1439 |
df_sorted["bin_description"] = df_sorted["bin"].map(bin_descriptions)
|
| 1440 |
-
|
| 1441 |
-
# Sort by bin (ascending to get Bin 1 first) and by count (descending) within each bin
|
| 1442 |
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
| 1443 |
-
|
| 1444 |
-
# Now split bins that have more than max_items_per_row items
|
| 1445 |
original_bins = df_sorted["bin"].unique()
|
| 1446 |
new_rows = []
|
| 1447 |
new_bin_descriptions = bin_descriptions.copy()
|
| 1448 |
-
|
| 1449 |
for bin_name in original_bins:
|
| 1450 |
bin_mask = df_sorted["bin"] == bin_name
|
| 1451 |
bin_group = df_sorted[bin_mask]
|
| 1452 |
bin_size = len(bin_group)
|
| 1453 |
-
|
| 1454 |
-
# If bin has more items than max_items_per_row, split it
|
| 1455 |
if bin_size > max_items_per_row:
|
| 1456 |
-
# Calculate how many sub-bins we need
|
| 1457 |
num_sub_bins = (bin_size + max_items_per_row - 1) // max_items_per_row
|
| 1458 |
-
|
| 1459 |
-
# Calculate items per sub-bin (distribute evenly)
|
| 1460 |
items_per_sub_bin = [bin_size // num_sub_bins] * num_sub_bins
|
| 1461 |
-
|
| 1462 |
-
# Distribute the remainder one by one to achieve balance
|
| 1463 |
remainder = bin_size % num_sub_bins
|
| 1464 |
for i in range(remainder):
|
| 1465 |
items_per_sub_bin[i] += 1
|
| 1466 |
-
|
| 1467 |
-
# Original bin description
|
| 1468 |
original_description = bin_descriptions[bin_name]
|
| 1469 |
-
|
| 1470 |
-
# Create new row entries and update bin assignments
|
| 1471 |
start_idx = 0
|
| 1472 |
for i in range(num_sub_bins):
|
| 1473 |
-
# Create new bin name with sub-bin index
|
| 1474 |
new_bin_name = f"{bin_name}_{i + 1}"
|
| 1475 |
-
|
| 1476 |
-
# Create new bin description with sub-bin index
|
| 1477 |
new_description = f"{original_description} ({i + 1}/{num_sub_bins})"
|
| 1478 |
new_bin_descriptions[new_bin_name] = new_description
|
| 1479 |
-
|
| 1480 |
-
# Get slice of dataframe for this sub-bin
|
| 1481 |
end_idx = start_idx + items_per_sub_bin[i]
|
| 1482 |
sub_bin_rows = bin_group.iloc[start_idx:end_idx].copy()
|
| 1483 |
-
|
| 1484 |
-
# Update bin name and description
|
| 1485 |
sub_bin_rows["bin"] = new_bin_name
|
| 1486 |
sub_bin_rows["bin_description"] = new_description
|
| 1487 |
-
|
| 1488 |
-
# Add to new rows
|
| 1489 |
new_rows.append(sub_bin_rows)
|
| 1490 |
-
|
| 1491 |
-
# Update start index for next iteration
|
| 1492 |
start_idx = end_idx
|
| 1493 |
-
|
| 1494 |
-
# Remove the original bin from df_sorted
|
| 1495 |
df_sorted = df_sorted[~bin_mask]
|
| 1496 |
-
|
| 1497 |
-
# Combine the original dataframe (with small bins) and the new split bins
|
| 1498 |
if new_rows:
|
| 1499 |
df_sorted = pd.concat([df_sorted] + new_rows)
|
| 1500 |
-
|
| 1501 |
-
# Re-sort with the new bin names
|
| 1502 |
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
| 1503 |
-
|
| 1504 |
-
# Calculate the vertical positions for each row (bin)
|
| 1505 |
bins_with_topics = sorted(df_sorted["bin"].unique())
|
| 1506 |
num_rows = len(bins_with_topics)
|
| 1507 |
-
|
| 1508 |
available_height = 100 - (2 * padding)
|
| 1509 |
row_height = available_height / num_rows
|
| 1510 |
-
|
| 1511 |
-
# Calculate and assign y-positions (vertical positions)
|
| 1512 |
-
row_positions = {}
|
| 1513 |
-
for i, bin_name in enumerate(bins_with_topics):
|
| 1514 |
-
# Calculate row position (centered within its allocated space)
|
| 1515 |
-
row_pos = padding + i * row_height + (row_height / 2)
|
| 1516 |
-
row_positions[bin_name] = row_pos
|
| 1517 |
-
|
| 1518 |
df_sorted["y"] = df_sorted["bin"].map(row_positions)
|
| 1519 |
-
|
| 1520 |
-
# Center the bubbles in each row horizontally
|
| 1521 |
-
center_point = 50 # Middle of the chart (0-100 scale)
|
| 1522 |
for bin_name in bins_with_topics:
|
| 1523 |
-
# Get topics in this bin
|
| 1524 |
bin_mask = df_sorted["bin"] == bin_name
|
| 1525 |
num_topics_in_bin = bin_mask.sum()
|
| 1526 |
-
|
| 1527 |
if num_topics_in_bin == 1:
|
| 1528 |
-
# If there's only one bubble, place it in the center
|
| 1529 |
df_sorted.loc[bin_mask, "x"] = center_point
|
| 1530 |
else:
|
| 1531 |
-
if num_topics_in_bin < max_items_per_row
|
| 1532 |
-
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
|
| 1536 |
-
start_pos = center_point - (total_width / 2)
|
| 1537 |
-
# Assign positions
|
| 1538 |
-
positions = [start_pos + (i * 17.5) for i in range(num_topics_in_bin)]
|
| 1539 |
-
df_sorted.loc[bin_mask, "x"] = positions
|
| 1540 |
-
else:
|
| 1541 |
-
# For multiple bubbles, distribute them evenly around the center
|
| 1542 |
-
# Calculate the total width needed
|
| 1543 |
-
total_width = (num_topics_in_bin - 1) * 15 # 15 units between bubbles
|
| 1544 |
-
|
| 1545 |
-
# Calculate starting position (to center the group)
|
| 1546 |
-
start_pos = center_point - (total_width / 2)
|
| 1547 |
-
|
| 1548 |
-
# Assign positions
|
| 1549 |
-
positions = [start_pos + (i * 15) for i in range(num_topics_in_bin)]
|
| 1550 |
-
df_sorted.loc[bin_mask, "x"] = positions
|
| 1551 |
-
|
| 1552 |
-
# Add original rank for reference
|
| 1553 |
df_sorted["size_rank"] = range(1, len(df_sorted) + 1)
|
| 1554 |
-
|
| 1555 |
return df_sorted
|
| 1556 |
|
| 1557 |
|
| 1558 |
-
#
|
| 1559 |
def update_bubble_positions(df: pd.DataFrame) -> pd.DataFrame:
|
| 1560 |
-
# For the main chart, we always use the binned layout
|
| 1561 |
return apply_binned_layout(df)
|
| 1562 |
|
| 1563 |
|
| 1564 |
-
# Callback to update the bubble chart
|
| 1565 |
@callback(
|
| 1566 |
Output("bubble-chart", "figure"),
|
| 1567 |
[
|
|
@@ -1575,258 +1446,109 @@ def update_bubble_chart(data, color_metric):
|
|
| 1575 |
|
| 1576 |
df = pd.DataFrame(data)
|
| 1577 |
|
| 1578 |
-
#
|
| 1579 |
-
|
|
|
|
|
|
|
| 1580 |
|
| 1581 |
-
# Always use count for sizing
|
| 1582 |
size_values = df["count"]
|
| 1583 |
raw_sizes = df["count"]
|
| 1584 |
size_title = "Dialog Count"
|
| 1585 |
-
|
| 1586 |
-
# Apply log scaling to the size values for better visualization
|
| 1587 |
-
# To make the smallest bubble bigger, increase the min_size value (currently 2.5).
|
| 1588 |
-
min_size = 1 # Minimum bubble size
|
| 1589 |
if size_values.max() > size_values.min():
|
| 1590 |
-
# Log-scale the sizes
|
| 1591 |
log_sizes = np.log1p(size_values)
|
| 1592 |
-
|
| 1593 |
-
# To make the biggest bubble smaller, reduce the multiplier (currently 50).
|
| 1594 |
-
size_values = (
|
| 1595 |
-
min_size
|
| 1596 |
-
+ (log_sizes - log_sizes.min()) / (log_sizes.max() - log_sizes.min()) * 50
|
| 1597 |
-
)
|
| 1598 |
else:
|
| 1599 |
-
# If all values are the same, use a default size
|
| 1600 |
size_values = np.ones(len(df)) * 12.5
|
| 1601 |
|
| 1602 |
-
# DEBUG: Print sizes of bubbles in the first and second bins
|
| 1603 |
-
bins = sorted(df["bin"].unique())
|
| 1604 |
-
if len(bins) >= 1:
|
| 1605 |
-
# first_bin = bins[0]
|
| 1606 |
-
# print(f"DEBUG - First bin '{first_bin}' bubble sizes:")
|
| 1607 |
-
# first_bin_df = df[df["bin"] == first_bin]
|
| 1608 |
-
# for idx, row in first_bin_df.iterrows():
|
| 1609 |
-
# print(
|
| 1610 |
-
# f" Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
|
| 1611 |
-
# )
|
| 1612 |
-
pass
|
| 1613 |
-
|
| 1614 |
-
if len(bins) >= 2:
|
| 1615 |
-
# second_bin = bins[1]
|
| 1616 |
-
# print(f"DEBUG - Second bin '{second_bin}' bubble sizes:")
|
| 1617 |
-
# second_bin_df = df[df["bin"] == second_bin]
|
| 1618 |
-
# for idx, row in second_bin_df.iterrows():
|
| 1619 |
-
# print(
|
| 1620 |
-
# f" Topic: {row['deduplicated_topic_name']}, Raw size: {row['count']}, Displayed size: {size_values[idx]}"
|
| 1621 |
-
# )
|
| 1622 |
-
pass
|
| 1623 |
-
|
| 1624 |
-
# Determine color based on selected metric
|
| 1625 |
if color_metric == "negative_rate":
|
| 1626 |
color_values = df["negative_rate"]
|
| 1627 |
-
# color_title = "Negative Sentiment (%)"
|
| 1628 |
color_title = "Negativity (%)"
|
| 1629 |
-
# color_scale = "RdBu" # no ice, RdBu - og is Reds - matter is good too
|
| 1630 |
-
# color_scale = "Portland"
|
| 1631 |
-
# color_scale = "RdYlGn_r"
|
| 1632 |
-
# color_scale = "Teal"
|
| 1633 |
color_scale = "Teal"
|
| 1634 |
-
|
| 1635 |
elif color_metric == "unresolved_rate":
|
| 1636 |
color_values = df["unresolved_rate"]
|
| 1637 |
color_title = "Unresolved (%)"
|
| 1638 |
-
# color_scale = "Burg" # og is YlOrRd
|
| 1639 |
-
# color_scale = "Temps"
|
| 1640 |
-
# color_scale = "Armyrose"
|
| 1641 |
-
# color_scale = "YlOrRd"
|
| 1642 |
color_scale = "Teal"
|
| 1643 |
-
else:
|
| 1644 |
color_values = df["urgent_rate"]
|
| 1645 |
color_title = "Urgency (%)"
|
| 1646 |
-
# color_scale = "Magenta" # og is Blues
|
| 1647 |
-
# color_scale = "Tealrose"
|
| 1648 |
-
# color_scale = "Portland"
|
| 1649 |
color_scale = "Teal"
|
| 1650 |
|
| 1651 |
-
# Create enhanced hover text that includes bin information
|
| 1652 |
hover_text = [
|
| 1653 |
f"Topic: {topic}<br>{size_title}: {raw:.1f}<br>{color_title}: {color:.1f}<br>Group: {bin_desc}"
|
| 1654 |
-
for topic, raw, color, bin_desc in zip(
|
| 1655 |
-
df["deduplicated_topic_name"],
|
| 1656 |
-
raw_sizes,
|
| 1657 |
-
color_values,
|
| 1658 |
-
df["bin_description"],
|
| 1659 |
-
)
|
| 1660 |
]
|
| 1661 |
|
| 1662 |
-
# Create bubble chart
|
| 1663 |
fig = px.scatter(
|
| 1664 |
df,
|
| 1665 |
-
x="x",
|
| 1666 |
-
y="y",
|
| 1667 |
size=size_values,
|
| 1668 |
color=color_values,
|
| 1669 |
-
# text="deduplicated_topic_name", # Remove text here
|
| 1670 |
hover_name="deduplicated_topic_name",
|
| 1671 |
-
hover_data={
|
| 1672 |
-
|
| 1673 |
-
"y": False,
|
| 1674 |
-
"bin_description": True,
|
| 1675 |
-
},
|
| 1676 |
-
size_max=42.5, # Maximum size of the bubbles, change this to adjust the size
|
| 1677 |
color_continuous_scale=color_scale,
|
| 1678 |
-
custom_data=[
|
| 1679 |
-
"deduplicated_topic_name",
|
| 1680 |
-
"count",
|
| 1681 |
-
"negative_rate",
|
| 1682 |
-
"unresolved_rate",
|
| 1683 |
-
"urgent_rate",
|
| 1684 |
-
"bin_description",
|
| 1685 |
-
],
|
| 1686 |
)
|
| 1687 |
|
| 1688 |
-
# Update traces: Remove text related properties
|
| 1689 |
fig.update_traces(
|
| 1690 |
-
mode="markers",
|
| 1691 |
marker=dict(sizemode="area", opacity=0.8, line=dict(width=1, color="white")),
|
| 1692 |
hovertemplate="%{hovertext}<extra></extra>",
|
| 1693 |
hovertext=hover_text,
|
| 1694 |
)
|
| 1695 |
|
| 1696 |
-
# Create annotations for the bubbles
|
| 1697 |
annotations = []
|
| 1698 |
for i, row in df.iterrows():
|
| 1699 |
-
# Wrap text every 2 words
|
| 1700 |
words = row["deduplicated_topic_name"].split()
|
| 1701 |
-
wrapped_text = "<br>".join(
|
| 1702 |
-
|
| 1703 |
-
)
|
| 1704 |
-
|
| 1705 |
-
# Calculate size for vertical offset (approximately based on the bubble size)
|
| 1706 |
-
# Add vertical offset based on bubble size to place text below the bubble
|
| 1707 |
-
marker_size = (
|
| 1708 |
-
size_values[i] / 20 # type: ignore # FIXME: size_values[df.index.get_loc(i)] / 20
|
| 1709 |
-
) # Adjust this divisor as needed to get proper spacing
|
| 1710 |
-
|
| 1711 |
annotations.append(
|
| 1712 |
dict(
|
| 1713 |
-
x=row["x"],
|
| 1714 |
-
|
| 1715 |
-
|
| 1716 |
-
|
| 1717 |
-
|
| 1718 |
-
|
| 1719 |
-
textangle=0,
|
| 1720 |
-
font=dict(
|
| 1721 |
-
# size=10,
|
| 1722 |
-
# size=15,
|
| 1723 |
-
size=9,
|
| 1724 |
-
color="var(--foreground)",
|
| 1725 |
-
family="Arial, sans-serif",
|
| 1726 |
-
weight="bold",
|
| 1727 |
-
),
|
| 1728 |
-
xanchor="center",
|
| 1729 |
-
yanchor="top", # Anchor to top of text box so it hangs below the bubble
|
| 1730 |
-
bgcolor="rgba(255,255,255,0.7)", # Add semi-transparent background for better readability
|
| 1731 |
-
bordercolor="rgba(0,0,0,0.1)", # Add a subtle border color
|
| 1732 |
-
borderwidth=1,
|
| 1733 |
-
borderpad=1,
|
| 1734 |
-
# TODO: Radius for rounded corners
|
| 1735 |
)
|
| 1736 |
)
|
| 1737 |
|
| 1738 |
-
# Add bin labels and separator lines
|
| 1739 |
unique_bins = sorted(df["bin"].unique())
|
| 1740 |
-
bin_y_positions = [
|
| 1741 |
-
df[df["bin"] == bin_name]["y"].mean() for bin_name in unique_bins
|
| 1742 |
-
]
|
| 1743 |
-
|
| 1744 |
-
# Dynamically extract bin descriptions
|
| 1745 |
bin_descriptions = df.set_index("bin")["bin_description"].to_dict()
|
| 1746 |
|
| 1747 |
for bin_name, bin_y in zip(unique_bins, bin_y_positions):
|
| 1748 |
-
|
| 1749 |
-
fig.add_shape(
|
| 1750 |
-
type="line",
|
| 1751 |
-
x0=0,
|
| 1752 |
-
y0=bin_y,
|
| 1753 |
-
x1=100,
|
| 1754 |
-
y1=bin_y,
|
| 1755 |
-
line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
|
| 1756 |
-
layer="below",
|
| 1757 |
-
)
|
| 1758 |
-
|
| 1759 |
-
# Add subtle lines for each bin and bin labels
|
| 1760 |
-
for bin_name, bin_y in zip(unique_bins, bin_y_positions):
|
| 1761 |
-
# Add horizontal line
|
| 1762 |
-
fig.add_shape(
|
| 1763 |
-
type="line",
|
| 1764 |
-
x0=0,
|
| 1765 |
-
y0=bin_y,
|
| 1766 |
-
x1=100,
|
| 1767 |
-
y1=bin_y,
|
| 1768 |
-
line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"),
|
| 1769 |
-
layer="below",
|
| 1770 |
-
)
|
| 1771 |
-
|
| 1772 |
-
# Add bin label annotation
|
| 1773 |
annotations.append(
|
| 1774 |
dict(
|
| 1775 |
-
x=0,
|
| 1776 |
-
|
| 1777 |
-
xref="x",
|
| 1778 |
-
yref="y",
|
| 1779 |
-
text=bin_descriptions[bin_name],
|
| 1780 |
-
showarrow=False,
|
| 1781 |
font=dict(size=8.25, color="var(--muted-foreground)"),
|
| 1782 |
-
align="left",
|
| 1783 |
-
|
| 1784 |
-
yanchor="middle",
|
| 1785 |
-
bgcolor="rgba(255,255,255,0.7)",
|
| 1786 |
-
borderpad=1,
|
| 1787 |
)
|
| 1788 |
)
|
| 1789 |
|
| 1790 |
fig.update_layout(
|
| 1791 |
title=None,
|
| 1792 |
-
xaxis=dict(
|
| 1793 |
-
|
| 1794 |
-
zeroline=False,
|
| 1795 |
-
showticklabels=False,
|
| 1796 |
-
title=None,
|
| 1797 |
-
range=[0, 100],
|
| 1798 |
-
),
|
| 1799 |
-
yaxis=dict(
|
| 1800 |
-
showgrid=False,
|
| 1801 |
-
zeroline=False,
|
| 1802 |
-
showticklabels=False,
|
| 1803 |
-
title=None,
|
| 1804 |
-
range=[0, 100],
|
| 1805 |
-
autorange="reversed", # Keep largest at top
|
| 1806 |
-
),
|
| 1807 |
hovermode="closest",
|
| 1808 |
margin=dict(l=0, r=0, t=10, b=10),
|
| 1809 |
-
coloraxis_colorbar=dict(
|
| 1810 |
-
title=color_title,
|
| 1811 |
-
title_font=dict(size=9),
|
| 1812 |
-
tickfont=dict(size=8),
|
| 1813 |
-
thickness=10,
|
| 1814 |
-
len=0.6,
|
| 1815 |
-
yanchor="middle",
|
| 1816 |
-
y=0.5,
|
| 1817 |
-
xpad=0,
|
| 1818 |
-
),
|
| 1819 |
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
| 1820 |
paper_bgcolor="rgba(0,0,0,0)",
|
| 1821 |
plot_bgcolor="rgba(0,0,0,0)",
|
| 1822 |
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Inter"),
|
| 1823 |
-
annotations=annotations,
|
| 1824 |
)
|
| 1825 |
|
| 1826 |
return fig
|
| 1827 |
|
| 1828 |
|
| 1829 |
-
# Update the
|
| 1830 |
@callback(
|
| 1831 |
[
|
| 1832 |
Output("topic-title", "children"),
|
|
@@ -1841,60 +1563,39 @@ def update_bubble_chart(data, color_metric):
|
|
| 1841 |
Output("selected-topic-store", "data"),
|
| 1842 |
],
|
| 1843 |
[
|
| 1844 |
-
Input("bubble-chart", "
|
| 1845 |
-
Input("bubble-chart", "clickData"),
|
| 1846 |
Input("refresh-dialogs-btn", "n_clicks"),
|
| 1847 |
],
|
| 1848 |
-
[State("stored-data", "data"), State("
|
| 1849 |
)
|
| 1850 |
-
def update_topic_details(
|
| 1851 |
-
|
| 1852 |
-
|
| 1853 |
-
|
| 1854 |
-
|
| 1855 |
-
|
| 1856 |
-
if not
|
| 1857 |
-
return
|
| 1858 |
-
|
| 1859 |
-
|
| 1860 |
-
|
| 1861 |
-
|
| 1862 |
-
|
| 1863 |
-
|
| 1864 |
-
|
| 1865 |
-
|
| 1866 |
-
|
| 1867 |
-
|
| 1868 |
-
|
| 1869 |
-
|
| 1870 |
-
# Extract topic name from the hover data
|
| 1871 |
-
topic_name = hover_info["points"][0]["customdata"][0]
|
| 1872 |
-
|
| 1873 |
-
# Get stored data for this topic
|
| 1874 |
df_stored = pd.DataFrame(stored_data)
|
| 1875 |
topic_data = df_stored[df_stored["deduplicated_topic_name"] == topic_name].iloc[0]
|
| 1876 |
|
| 1877 |
-
#
|
| 1878 |
-
|
| 1879 |
-
decoded = base64.b64decode(content_string)
|
| 1880 |
-
|
| 1881 |
-
if (
|
| 1882 |
-
content_type
|
| 1883 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 1884 |
-
):
|
| 1885 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 1886 |
-
else: # Assume CSV
|
| 1887 |
-
df_full = pd.read_csv(
|
| 1888 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 1889 |
-
)
|
| 1890 |
-
|
| 1891 |
-
# Filter to this topic
|
| 1892 |
topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]
|
| 1893 |
|
| 1894 |
-
#
|
| 1895 |
title = html.Div([html.Span(topic_name)])
|
| 1896 |
-
|
| 1897 |
-
# Create metadata items
|
| 1898 |
metadata_items = [
|
| 1899 |
html.Div(
|
| 1900 |
[
|
|
@@ -1902,10 +1603,8 @@ def update_topic_details(
|
|
| 1902 |
html.Span(f"{int(topic_data['count'])} dialogs"),
|
| 1903 |
html.Button(
|
| 1904 |
[
|
| 1905 |
-
html.I(
|
| 1906 |
-
|
| 1907 |
-
),
|
| 1908 |
-
"Show all dialogs inside",
|
| 1909 |
],
|
| 1910 |
id="show-all-dialogs-btn",
|
| 1911 |
className="show-dialogs-btn",
|
|
@@ -1916,8 +1615,6 @@ def update_topic_details(
|
|
| 1916 |
style={"display": "flex", "alignItems": "center", "width": "100%"},
|
| 1917 |
),
|
| 1918 |
]
|
| 1919 |
-
|
| 1920 |
-
# Create metrics boxes
|
| 1921 |
metrics_boxes = [
|
| 1922 |
html.Div(
|
| 1923 |
[
|
|
@@ -1942,54 +1639,25 @@ def update_topic_details(
|
|
| 1942 |
),
|
| 1943 |
]
|
| 1944 |
|
| 1945 |
-
# Extract and process root causes
|
| 1946 |
root_causes_output = ""
|
| 1947 |
root_causes_section_style = {"display": "none"}
|
| 1948 |
-
|
| 1949 |
-
# Check if root_cause_subcluster column exists in the data
|
| 1950 |
if "root_cause_subcluster" in topic_conversations.columns:
|
| 1951 |
-
# Get unique root causes for this specific cluster
|
| 1952 |
-
root_causes = topic_conversations["root_cause_subcluster"].dropna().unique()
|
| 1953 |
-
|
| 1954 |
-
# Filter out common non-informative values including "Unclustered"
|
| 1955 |
filtered_root_causes = [
|
| 1956 |
-
rc
|
| 1957 |
-
|
| 1958 |
-
if rc
|
| 1959 |
-
not in [
|
| 1960 |
-
"Sub-clustering disabled",
|
| 1961 |
-
"Not eligible for sub-clustering",
|
| 1962 |
-
"No valid root causes",
|
| 1963 |
-
"No Subcluster",
|
| 1964 |
-
"Unclustered",
|
| 1965 |
-
"",
|
| 1966 |
-
]
|
| 1967 |
]
|
| 1968 |
-
|
| 1969 |
-
# Debug: Print the unique root causes for this cluster
|
| 1970 |
-
print(f"\n[DEBUG] Root causes for cluster '{topic_name}':")
|
| 1971 |
-
print(f" All root causes: {list(root_causes)}")
|
| 1972 |
-
print(f" Filtered root causes: {filtered_root_causes}")
|
| 1973 |
-
|
| 1974 |
if filtered_root_causes:
|
| 1975 |
-
# Create beautifully styled root cause tags with clickable icons
|
| 1976 |
root_causes_output = html.Div(
|
| 1977 |
[
|
| 1978 |
html.Div(
|
| 1979 |
[
|
| 1980 |
-
html.I(
|
| 1981 |
-
className="fas fa-exclamation-triangle root-cause-tag-icon"
|
| 1982 |
-
),
|
| 1983 |
html.Span(root_cause, style={"marginRight": "6px"}),
|
| 1984 |
html.I(
|
| 1985 |
className="fas fa-external-link-alt root-cause-click-icon",
|
| 1986 |
id={"type": "root-cause-icon", "index": root_cause},
|
| 1987 |
title="Click to see specific chats assigned with this root cause.",
|
| 1988 |
-
style={
|
| 1989 |
-
"cursor": "pointer",
|
| 1990 |
-
"fontSize": "0.55rem",
|
| 1991 |
-
"opacity": "0.8",
|
| 1992 |
-
},
|
| 1993 |
),
|
| 1994 |
],
|
| 1995 |
className="root-cause-tag",
|
|
@@ -2001,30 +1669,19 @@ def update_topic_details(
|
|
| 2001 |
)
|
| 2002 |
root_causes_section_style = {"display": "block"}
|
| 2003 |
|
| 2004 |
-
# Extract and process consolidated_tags with improved styling
|
| 2005 |
tags_list = []
|
| 2006 |
-
|
| 2007 |
-
tags_str
|
| 2008 |
-
|
| 2009 |
-
|
| 2010 |
-
tags_list.extend(tags)
|
| 2011 |
-
|
| 2012 |
-
# Count tag frequencies for better insight
|
| 2013 |
tag_counts = {}
|
| 2014 |
for tag in tags_list:
|
| 2015 |
tag_counts[tag] = tag_counts.get(tag, 0) + 1
|
| 2016 |
|
| 2017 |
-
|
| 2018 |
-
sorted_tags = sorted(tag_counts.items(), key=lambda x: (-x[1], x[0]))
|
| 2019 |
-
|
| 2020 |
-
# Keep only the top K tags
|
| 2021 |
-
TOP_K = 15
|
| 2022 |
-
sorted_tags = sorted_tags[:TOP_K]
|
| 2023 |
|
| 2024 |
-
# Set tags section visibility and output
|
| 2025 |
tags_section_style = {"display": "none"}
|
| 2026 |
if sorted_tags:
|
| 2027 |
-
# Create beautifully styled tags with count indicators and consistent color
|
| 2028 |
tags_output = html.Div(
|
| 2029 |
[
|
| 2030 |
html.Div(
|
|
@@ -2041,87 +1698,37 @@ def update_topic_details(
|
|
| 2041 |
tags_section_style = {"display": "block"}
|
| 2042 |
else:
|
| 2043 |
tags_output = html.Div(
|
| 2044 |
-
[
|
| 2045 |
-
html.I(className="fas fa-info-circle", style={"marginRight": "5px"}),
|
| 2046 |
-
"No tags found for this topic",
|
| 2047 |
-
],
|
| 2048 |
className="no-tags-message",
|
| 2049 |
)
|
| 2050 |
|
| 2051 |
-
# Sample up to 5 random dialogs
|
| 2052 |
sample_size = min(5, len(topic_conversations))
|
| 2053 |
if sample_size > 0:
|
| 2054 |
-
|
| 2055 |
-
samples = topic_conversations.iloc[sample_indices]
|
| 2056 |
-
|
| 2057 |
dialog_items = []
|
| 2058 |
for _, row in samples.iterrows():
|
| 2059 |
-
|
| 2060 |
-
|
| 2061 |
-
row["
|
| 2062 |
-
|
| 2063 |
-
|
| 2064 |
-
row["Resolution"], className="dialog-tag tag-resolution"
|
| 2065 |
-
)
|
| 2066 |
-
urgency_tag = html.Span(row["Urgency"], className="dialog-tag tag-urgency")
|
| 2067 |
-
|
| 2068 |
-
# Add Chat ID tag if 'id' column exists
|
| 2069 |
-
chat_id_tag = None
|
| 2070 |
if "id" in row:
|
| 2071 |
-
|
| 2072 |
-
[
|
| 2073 |
-
|
| 2074 |
-
|
| 2075 |
-
|
| 2076 |
-
|
| 2077 |
-
title="View full conversation",
|
| 2078 |
-
style={"marginLeft": "0.25rem"},
|
| 2079 |
-
),
|
| 2080 |
-
],
|
| 2081 |
-
className="dialog-tag tag-chat-id",
|
| 2082 |
-
style={"display": "inline-flex", "alignItems": "center"},
|
| 2083 |
-
)
|
| 2084 |
-
|
| 2085 |
-
# Add Root Cause tag if 'Root Cause' column exists
|
| 2086 |
-
root_cause_tag = None
|
| 2087 |
-
if (
|
| 2088 |
-
"Root_Cause" in row
|
| 2089 |
-
and pd.notna(row["Root_Cause"])
|
| 2090 |
-
and row["Root_Cause"] != "na"
|
| 2091 |
-
):
|
| 2092 |
-
root_cause_tag = html.Span(
|
| 2093 |
-
f"Root Cause: {row['Root_Cause']}",
|
| 2094 |
-
className="dialog-tag tag-root-cause",
|
| 2095 |
-
)
|
| 2096 |
-
|
| 2097 |
-
# Compile all tags, including the new Chat ID and Root Cause tags if available
|
| 2098 |
-
tags = [sentiment_tag, resolution_tag, urgency_tag]
|
| 2099 |
-
if chat_id_tag:
|
| 2100 |
-
tags.append(chat_id_tag)
|
| 2101 |
-
if root_cause_tag:
|
| 2102 |
-
tags.append(root_cause_tag)
|
| 2103 |
|
| 2104 |
dialog_items.append(
|
| 2105 |
html.Div(
|
| 2106 |
-
[
|
| 2107 |
-
html.Div(row["Summary"], className="dialog-summary"),
|
| 2108 |
-
html.Div(
|
| 2109 |
-
tags,
|
| 2110 |
-
className="dialog-metadata",
|
| 2111 |
-
),
|
| 2112 |
-
],
|
| 2113 |
className="dialog-item",
|
| 2114 |
)
|
| 2115 |
)
|
| 2116 |
-
|
| 2117 |
sample_dialogs = dialog_items
|
| 2118 |
else:
|
| 2119 |
-
sample_dialogs = [
|
| 2120 |
-
html.Div(
|
| 2121 |
-
"No sample dialogs available for this topic.",
|
| 2122 |
-
style={"color": "var(--muted-foreground)"},
|
| 2123 |
-
)
|
| 2124 |
-
]
|
| 2125 |
|
| 2126 |
return (
|
| 2127 |
title,
|
|
@@ -2133,11 +1740,11 @@ def update_topic_details(
|
|
| 2133 |
tags_section_style,
|
| 2134 |
sample_dialogs,
|
| 2135 |
{"display": "none"},
|
| 2136 |
-
{"topic_name": topic_name,
|
| 2137 |
)
|
| 2138 |
|
| 2139 |
|
| 2140 |
-
#
|
| 2141 |
@callback(
|
| 2142 |
[
|
| 2143 |
Output("conversation-modal", "style"),
|
|
@@ -2145,40 +1752,22 @@ def update_topic_details(
|
|
| 2145 |
Output("conversation-subheader", "children"),
|
| 2146 |
],
|
| 2147 |
[Input({"type": "conversation-icon", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 2148 |
-
[State("
|
| 2149 |
prevent_initial_call=True,
|
| 2150 |
)
|
| 2151 |
-
def open_conversation_modal(n_clicks_list,
|
| 2152 |
-
|
| 2153 |
-
if not any(n_clicks_list) or not file_contents:
|
| 2154 |
return {"display": "none"}, "", ""
|
| 2155 |
|
| 2156 |
-
# Get which icon was clicked
|
| 2157 |
ctx = dash.callback_context
|
| 2158 |
if not ctx.triggered:
|
| 2159 |
-
return
|
| 2160 |
-
|
| 2161 |
-
"",
|
| 2162 |
-
"",
|
| 2163 |
-
) # Extract the chat ID from the triggered input
|
| 2164 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 2165 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 2166 |
|
| 2167 |
-
|
| 2168 |
-
|
| 2169 |
-
decoded = base64.b64decode(content_string)
|
| 2170 |
-
|
| 2171 |
-
if (
|
| 2172 |
-
content_type
|
| 2173 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 2174 |
-
):
|
| 2175 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 2176 |
-
else: # Assume CSV
|
| 2177 |
-
df_full = pd.read_csv(
|
| 2178 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 2179 |
-
)
|
| 2180 |
-
|
| 2181 |
-
# Find the conversation with this chat ID
|
| 2182 |
conversation_row = df_full[df_full["id"] == chat_id]
|
| 2183 |
if len(conversation_row) == 0:
|
| 2184 |
conversation_text = "Conversation not found."
|
|
@@ -2186,28 +1775,17 @@ def open_conversation_modal(n_clicks_list, file_contents):
|
|
| 2186 |
else:
|
| 2187 |
row = conversation_row.iloc[0]
|
| 2188 |
conversation_text = row.get("conversation", "No conversation data available.")
|
| 2189 |
-
|
| 2190 |
-
# Get cluster name if available
|
| 2191 |
cluster_name = row.get("deduplicated_topic_name", "Unknown cluster")
|
| 2192 |
-
|
| 2193 |
-
# Create subheader with both Chat ID and cluster name
|
| 2194 |
subheader_content = html.Div(
|
| 2195 |
[
|
| 2196 |
-
html.Span(
|
| 2197 |
-
|
| 2198 |
-
style={"fontWeight": "600", "marginRight": "1rem"},
|
| 2199 |
-
),
|
| 2200 |
-
html.Span(
|
| 2201 |
-
f"Cluster: {cluster_name}",
|
| 2202 |
-
style={"color": "hsl(215.4, 16.3%, 46.9%)"},
|
| 2203 |
-
),
|
| 2204 |
]
|
| 2205 |
)
|
| 2206 |
-
|
| 2207 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 2208 |
|
| 2209 |
|
| 2210 |
-
# Callback to close modal
|
| 2211 |
@callback(
|
| 2212 |
Output("conversation-modal", "style", allow_duplicate=True),
|
| 2213 |
[Input("close-modal-btn", "n_clicks")],
|
|
@@ -2216,10 +1794,10 @@ def open_conversation_modal(n_clicks_list, file_contents):
|
|
| 2216 |
def close_conversation_modal(n_clicks):
|
| 2217 |
if n_clicks:
|
| 2218 |
return {"display": "none"}
|
| 2219 |
-
return
|
| 2220 |
|
| 2221 |
|
| 2222 |
-
#
|
| 2223 |
@callback(
|
| 2224 |
[
|
| 2225 |
Output("dialogs-table-modal", "style"),
|
|
@@ -2227,174 +1805,51 @@ def close_conversation_modal(n_clicks):
|
|
| 2227 |
Output("dialogs-table-content", "children"),
|
| 2228 |
],
|
| 2229 |
[Input("show-all-dialogs-btn", "n_clicks")],
|
| 2230 |
-
[State("selected-topic-store", "data")],
|
| 2231 |
prevent_initial_call=True,
|
| 2232 |
)
|
| 2233 |
-
def open_dialogs_table_modal(n_clicks, selected_topic_data):
|
| 2234 |
-
if not n_clicks or not selected_topic_data:
|
| 2235 |
return {"display": "none"}, "", ""
|
| 2236 |
|
| 2237 |
topic_name = selected_topic_data["topic_name"]
|
| 2238 |
-
|
| 2239 |
-
|
| 2240 |
-
# Get the full data
|
| 2241 |
-
content_type, content_string = file_contents.split(",")
|
| 2242 |
-
decoded = base64.b64decode(content_string)
|
| 2243 |
-
|
| 2244 |
-
if (
|
| 2245 |
-
content_type
|
| 2246 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 2247 |
-
):
|
| 2248 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 2249 |
-
else: # Assume CSV
|
| 2250 |
-
df_full = pd.read_csv(
|
| 2251 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 2252 |
-
)
|
| 2253 |
|
| 2254 |
-
# Filter to this topic
|
| 2255 |
topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]
|
| 2256 |
-
|
| 2257 |
-
|
| 2258 |
-
|
| 2259 |
-
|
| 2260 |
-
|
| 2261 |
-
|
| 2262 |
-
|
| 2263 |
-
|
| 2264 |
-
html.Th("Chat ID"),
|
| 2265 |
-
html.Th("Summary"),
|
| 2266 |
-
html.Th("Root Cause"),
|
| 2267 |
-
html.Th("Sentiment"),
|
| 2268 |
-
html.Th("Resolution"),
|
| 2269 |
-
html.Th("Urgency"),
|
| 2270 |
-
html.Th("Tags"),
|
| 2271 |
-
html.Th("Action"),
|
| 2272 |
-
]
|
| 2273 |
-
)
|
| 2274 |
-
)
|
| 2275 |
-
|
| 2276 |
-
# Data rows
|
| 2277 |
for _, row in topic_conversations.iterrows():
|
| 2278 |
-
|
| 2279 |
-
|
| 2280 |
-
|
| 2281 |
-
|
| 2282 |
-
|
| 2283 |
-
|
| 2284 |
-
|
| 2285 |
-
tag,
|
| 2286 |
-
className="dialog-tag-small",
|
| 2287 |
-
style={"backgroundColor": "#6c757d", "color": "white"},
|
| 2288 |
-
)
|
| 2289 |
-
for tag in tags[:3] # Show only first 3 tags
|
| 2290 |
-
]
|
| 2291 |
-
+ (
|
| 2292 |
-
[
|
| 2293 |
-
html.Span(
|
| 2294 |
-
f"+{len(tags) - 3}",
|
| 2295 |
-
className="dialog-tag-small",
|
| 2296 |
-
style={"backgroundColor": "#6c757d", "color": "white"},
|
| 2297 |
-
)
|
| 2298 |
-
]
|
| 2299 |
-
if len(tags) > 3
|
| 2300 |
-
else []
|
| 2301 |
-
),
|
| 2302 |
-
className="dialog-tags-cell",
|
| 2303 |
-
)
|
| 2304 |
-
else:
|
| 2305 |
-
tags_display = html.Span(
|
| 2306 |
-
"No tags",
|
| 2307 |
-
style={"color": "var(--muted-foreground)", "fontStyle": "italic"},
|
| 2308 |
-
)
|
| 2309 |
-
|
| 2310 |
table_rows.append(
|
| 2311 |
-
html.Tr(
|
| 2312 |
-
[
|
| 2313 |
-
|
| 2314 |
-
|
| 2315 |
-
|
| 2316 |
-
|
| 2317 |
-
|
| 2318 |
-
|
| 2319 |
-
|
| 2320 |
-
|
| 2321 |
-
html.Td(
|
| 2322 |
-
html.Span(
|
| 2323 |
-
str(row.get("Root_Cause", "Unknown")).capitalize()
|
| 2324 |
-
if not pd.isna(row.get("Root_Cause"))
|
| 2325 |
-
else "Unknown",
|
| 2326 |
-
className="dialog-tag-small",
|
| 2327 |
-
style={
|
| 2328 |
-
"backgroundColor": "#8B4513", # Brown color for root cause
|
| 2329 |
-
"color": "white",
|
| 2330 |
-
},
|
| 2331 |
-
)
|
| 2332 |
-
),
|
| 2333 |
-
html.Td(
|
| 2334 |
-
html.Span( # if sentiment is negative, color it red, otherwise grey
|
| 2335 |
-
row.get("Sentiment", "Unknown").capitalize(),
|
| 2336 |
-
className="dialog-tag-small",
|
| 2337 |
-
style={
|
| 2338 |
-
"backgroundColor": "#dc3545"
|
| 2339 |
-
if row.get("Sentiment") == "negative"
|
| 2340 |
-
else "#6c757d",
|
| 2341 |
-
"color": "white",
|
| 2342 |
-
},
|
| 2343 |
-
)
|
| 2344 |
-
),
|
| 2345 |
-
html.Td(
|
| 2346 |
-
html.Span( # if resolution is unresolved, color it red, otherwise grey
|
| 2347 |
-
row.get("Resolution", "Unknown").capitalize(),
|
| 2348 |
-
className="dialog-tag-small",
|
| 2349 |
-
style={
|
| 2350 |
-
"backgroundColor": "#dc3545"
|
| 2351 |
-
if row.get("Resolution") == "unresolved"
|
| 2352 |
-
else "#6c757d",
|
| 2353 |
-
"color": "white",
|
| 2354 |
-
},
|
| 2355 |
-
)
|
| 2356 |
-
),
|
| 2357 |
-
html.Td(
|
| 2358 |
-
html.Span( # if urgency is urgent, color it red, otherwise grey
|
| 2359 |
-
row.get("Urgency", "Unknown").capitalize(),
|
| 2360 |
-
className="dialog-tag-small",
|
| 2361 |
-
style={
|
| 2362 |
-
"backgroundColor": "#dc3545"
|
| 2363 |
-
if row.get("Urgency") == "urgent"
|
| 2364 |
-
else "#6c757d",
|
| 2365 |
-
"color": "white",
|
| 2366 |
-
},
|
| 2367 |
-
)
|
| 2368 |
-
),
|
| 2369 |
-
html.Td(tags_display),
|
| 2370 |
-
html.Td(
|
| 2371 |
-
html.Button(
|
| 2372 |
-
[
|
| 2373 |
-
html.I(
|
| 2374 |
-
className="fas fa-eye",
|
| 2375 |
-
style={"marginRight": "0.25rem"},
|
| 2376 |
-
),
|
| 2377 |
-
"View chat session",
|
| 2378 |
-
],
|
| 2379 |
-
id={"type": "open-chat-btn", "index": row["id"]},
|
| 2380 |
-
className="open-chat-btn",
|
| 2381 |
-
n_clicks=0,
|
| 2382 |
-
)
|
| 2383 |
-
),
|
| 2384 |
-
]
|
| 2385 |
-
)
|
| 2386 |
)
|
| 2387 |
-
|
| 2388 |
table = html.Table(table_rows, className="dialogs-table")
|
| 2389 |
-
|
| 2390 |
-
modal_title = (
|
| 2391 |
-
f"All dialogs in Topic: {topic_name} ({len(topic_conversations)} dialogs)"
|
| 2392 |
-
)
|
| 2393 |
-
|
| 2394 |
return {"display": "flex"}, modal_title, table
|
| 2395 |
|
| 2396 |
|
| 2397 |
-
# Callback to close dialogs table modal
|
| 2398 |
@callback(
|
| 2399 |
Output("dialogs-table-modal", "style", allow_duplicate=True),
|
| 2400 |
[Input("close-dialogs-modal-btn", "n_clicks")],
|
|
@@ -2403,10 +1858,10 @@ def open_dialogs_table_modal(n_clicks, selected_topic_data):
|
|
| 2403 |
def close_dialogs_table_modal(n_clicks):
|
| 2404 |
if n_clicks:
|
| 2405 |
return {"display": "none"}
|
| 2406 |
-
return
|
| 2407 |
|
| 2408 |
|
| 2409 |
-
#
|
| 2410 |
@callback(
|
| 2411 |
[
|
| 2412 |
Output("conversation-modal", "style", allow_duplicate=True),
|
|
@@ -2414,77 +1869,34 @@ def close_dialogs_table_modal(n_clicks):
|
|
| 2414 |
Output("conversation-subheader", "children", allow_duplicate=True),
|
| 2415 |
],
|
| 2416 |
[Input({"type": "open-chat-btn", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 2417 |
-
[State("
|
| 2418 |
prevent_initial_call=True,
|
| 2419 |
)
|
| 2420 |
-
def open_conversation_from_table(n_clicks_list,
|
| 2421 |
-
|
| 2422 |
-
if not any(n_clicks_list) or not file_contents:
|
| 2423 |
return {"display": "none"}, "", ""
|
| 2424 |
|
| 2425 |
-
# Get which button was clicked
|
| 2426 |
ctx = dash.callback_context
|
| 2427 |
if not ctx.triggered:
|
| 2428 |
return {"display": "none"}, "", ""
|
| 2429 |
|
| 2430 |
-
# Extract the chat ID from the triggered input
|
| 2431 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 2432 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 2433 |
|
| 2434 |
-
|
| 2435 |
-
|
| 2436 |
-
|
| 2437 |
-
# Get the full conversation from the uploaded file
|
| 2438 |
-
content_type, content_string = file_contents.split(",")
|
| 2439 |
-
decoded = base64.b64decode(content_string)
|
| 2440 |
-
|
| 2441 |
-
if (
|
| 2442 |
-
content_type
|
| 2443 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 2444 |
-
):
|
| 2445 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 2446 |
-
else: # Assume CSV
|
| 2447 |
-
df_full = pd.read_csv(
|
| 2448 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 2449 |
-
)
|
| 2450 |
-
|
| 2451 |
-
# Debug: print some info about the dataframe
|
| 2452 |
-
print(f"DEBUG: DataFrame shape: {df_full.shape}")
|
| 2453 |
-
print(f"DEBUG: Available chat IDs (first 5): {df_full['id'].head().tolist()}")
|
| 2454 |
-
print(f"DEBUG: Chat ID types in df: {df_full['id'].dtype}")
|
| 2455 |
-
|
| 2456 |
-
# Try to match with different data type conversions
|
| 2457 |
conversation_row = df_full[df_full["id"] == chat_id]
|
| 2458 |
-
|
| 2459 |
-
# If not found, try converting types
|
| 2460 |
-
if len(conversation_row) == 0:
|
| 2461 |
-
# Try converting chat_id to string
|
| 2462 |
-
conversation_row = df_full[df_full["id"].astype(str) == str(chat_id)]
|
| 2463 |
-
|
| 2464 |
-
# If still not found, try converting df id to int
|
| 2465 |
-
if len(conversation_row) == 0:
|
| 2466 |
-
try:
|
| 2467 |
-
conversation_row = df_full[df_full["id"] == int(chat_id)]
|
| 2468 |
-
except (ValueError, TypeError):
|
| 2469 |
-
pass
|
| 2470 |
-
|
| 2471 |
if len(conversation_row) == 0:
|
| 2472 |
-
conversation_text = f"Conversation not found for Chat ID: {chat_id}
|
| 2473 |
subheader_content = f"Chat ID: {chat_id} (Not Found)"
|
| 2474 |
else:
|
| 2475 |
-
|
| 2476 |
-
conversation_text =
|
| 2477 |
-
|
| 2478 |
-
"No conversation available, oopsie.", # fix here the conversation status
|
| 2479 |
-
)
|
| 2480 |
-
|
| 2481 |
-
# Create subheader with metadata
|
| 2482 |
-
subheader_content = f"Chat ID: {chat_id} | Topic: {conversation_row.get('deduplicated_topic_name', 'Unknown')} | Sentiment: {conversation_row.get('Sentiment', 'Unknown')} | Resolution: {conversation_row.get('Resolution', 'Unknown')}"
|
| 2483 |
-
|
| 2484 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 2485 |
|
| 2486 |
|
| 2487 |
-
#
|
| 2488 |
@callback(
|
| 2489 |
[
|
| 2490 |
Output("root-cause-modal", "style"),
|
|
@@ -2492,181 +1904,64 @@ def open_conversation_from_table(n_clicks_list, file_contents):
|
|
| 2492 |
Output("root-cause-table-content", "children"),
|
| 2493 |
],
|
| 2494 |
[Input({"type": "root-cause-icon", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 2495 |
-
[State("selected-topic-store", "data")],
|
| 2496 |
prevent_initial_call=True,
|
| 2497 |
)
|
| 2498 |
-
def open_root_cause_modal(n_clicks_list, selected_topic_data):
|
| 2499 |
-
|
| 2500 |
-
if not any(n_clicks_list) or not selected_topic_data:
|
| 2501 |
return {"display": "none"}, "", ""
|
| 2502 |
|
| 2503 |
-
# Get which icon was clicked
|
| 2504 |
ctx = dash.callback_context
|
| 2505 |
if not ctx.triggered:
|
| 2506 |
return {"display": "none"}, "", ""
|
| 2507 |
|
| 2508 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 2509 |
root_cause = json.loads(triggered_id.split(".")[0])["index"]
|
| 2510 |
-
|
| 2511 |
topic_name = selected_topic_data["topic_name"]
|
| 2512 |
-
|
| 2513 |
-
|
| 2514 |
-
# Get the full data
|
| 2515 |
-
content_type, content_string = file_contents.split(",")
|
| 2516 |
-
decoded = base64.b64decode(content_string)
|
| 2517 |
-
|
| 2518 |
-
if (
|
| 2519 |
-
content_type
|
| 2520 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 2521 |
-
):
|
| 2522 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 2523 |
-
else: # Assume CSV
|
| 2524 |
-
df_full = pd.read_csv(
|
| 2525 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 2526 |
-
)
|
| 2527 |
-
|
| 2528 |
-
# Filter to this topic and root cause
|
| 2529 |
filtered_conversations = df_full[
|
| 2530 |
(df_full["deduplicated_topic_name"] == topic_name)
|
| 2531 |
& (df_full["root_cause_subcluster"] == root_cause)
|
| 2532 |
]
|
| 2533 |
|
| 2534 |
-
|
| 2535 |
-
|
| 2536 |
-
|
| 2537 |
-
|
| 2538 |
-
|
| 2539 |
-
|
| 2540 |
-
[
|
| 2541 |
-
html.Th("Chat ID"),
|
| 2542 |
-
html.Th("Summary"),
|
| 2543 |
-
html.Th("Sentiment"),
|
| 2544 |
-
html.Th("Resolution"),
|
| 2545 |
-
html.Th("Urgency"),
|
| 2546 |
-
html.Th("Tags"),
|
| 2547 |
-
html.Th("Action"),
|
| 2548 |
-
]
|
| 2549 |
-
)
|
| 2550 |
-
)
|
| 2551 |
-
|
| 2552 |
-
# Data rows
|
| 2553 |
for _, row in filtered_conversations.iterrows():
|
| 2554 |
-
|
| 2555 |
-
|
| 2556 |
-
|
| 2557 |
-
|
| 2558 |
-
|
| 2559 |
-
|
| 2560 |
-
html.Span(
|
| 2561 |
-
tag,
|
| 2562 |
-
className="dialog-tag-small",
|
| 2563 |
-
style={"backgroundColor": "#6c757d", "color": "white"},
|
| 2564 |
-
)
|
| 2565 |
-
for tag in tags[:3] # Show only first 3 tags
|
| 2566 |
-
]
|
| 2567 |
-
+ (
|
| 2568 |
-
[
|
| 2569 |
-
html.Span(
|
| 2570 |
-
f"+{len(tags) - 3}",
|
| 2571 |
-
className="dialog-tag-small",
|
| 2572 |
-
style={"backgroundColor": "#6c757d", "color": "white"},
|
| 2573 |
-
)
|
| 2574 |
-
]
|
| 2575 |
-
if len(tags) > 3
|
| 2576 |
-
else []
|
| 2577 |
-
),
|
| 2578 |
-
className="dialog-tags-cell",
|
| 2579 |
-
)
|
| 2580 |
-
else:
|
| 2581 |
-
tags_display = html.Span(
|
| 2582 |
-
"No tags",
|
| 2583 |
-
style={"color": "var(--muted-foreground)", "fontStyle": "italic"},
|
| 2584 |
-
)
|
| 2585 |
|
| 2586 |
table_rows.append(
|
| 2587 |
-
html.Tr(
|
| 2588 |
-
[
|
| 2589 |
-
|
| 2590 |
-
|
| 2591 |
-
|
| 2592 |
-
|
| 2593 |
-
|
| 2594 |
-
|
| 2595 |
-
|
| 2596 |
-
),
|
| 2597 |
-
html.Td(
|
| 2598 |
-
html.Span(
|
| 2599 |
-
row.get("Sentiment", "Unknown").capitalize(),
|
| 2600 |
-
className="dialog-tag-small",
|
| 2601 |
-
style={
|
| 2602 |
-
"backgroundColor": "#dc3545"
|
| 2603 |
-
if row.get("Sentiment") == "negative"
|
| 2604 |
-
else "#6c757d",
|
| 2605 |
-
"color": "white",
|
| 2606 |
-
},
|
| 2607 |
-
)
|
| 2608 |
-
),
|
| 2609 |
-
html.Td(
|
| 2610 |
-
html.Span(
|
| 2611 |
-
row.get("Resolution", "Unknown").capitalize(),
|
| 2612 |
-
className="dialog-tag-small",
|
| 2613 |
-
style={
|
| 2614 |
-
"backgroundColor": "#dc3545"
|
| 2615 |
-
if row.get("Resolution") == "unresolved"
|
| 2616 |
-
else "#6c757d",
|
| 2617 |
-
"color": "white",
|
| 2618 |
-
},
|
| 2619 |
-
)
|
| 2620 |
-
),
|
| 2621 |
-
html.Td(
|
| 2622 |
-
html.Span(
|
| 2623 |
-
row.get("Urgency", "Unknown").capitalize(),
|
| 2624 |
-
className="dialog-tag-small",
|
| 2625 |
-
style={
|
| 2626 |
-
"backgroundColor": "#dc3545"
|
| 2627 |
-
if row.get("Urgency") == "urgent"
|
| 2628 |
-
else "#6c757d",
|
| 2629 |
-
"color": "white",
|
| 2630 |
-
},
|
| 2631 |
-
)
|
| 2632 |
-
),
|
| 2633 |
-
html.Td(tags_display),
|
| 2634 |
-
html.Td(
|
| 2635 |
-
html.Button(
|
| 2636 |
-
[
|
| 2637 |
-
html.I(
|
| 2638 |
-
className="fas fa-eye",
|
| 2639 |
-
style={"marginRight": "0.25rem"},
|
| 2640 |
-
),
|
| 2641 |
-
"View chat",
|
| 2642 |
-
],
|
| 2643 |
-
id={"type": "open-chat-btn-rc", "index": row["id"]},
|
| 2644 |
-
className="open-chat-btn",
|
| 2645 |
-
n_clicks=0,
|
| 2646 |
-
)
|
| 2647 |
-
),
|
| 2648 |
-
]
|
| 2649 |
-
)
|
| 2650 |
)
|
| 2651 |
-
|
| 2652 |
table = html.Table(table_rows, className="dialogs-table")
|
| 2653 |
-
|
| 2654 |
-
modal_title = f"Dialogs with Root Cause: {root_cause} (Topic: {topic_name})"
|
| 2655 |
count_info = html.P(
|
| 2656 |
-
f"Found {len(filtered_conversations)} dialogs with this root cause",
|
| 2657 |
-
style={
|
| 2658 |
-
"margin": "0 0 1rem 0",
|
| 2659 |
-
"color": "var(--muted-foreground)",
|
| 2660 |
-
"fontSize": "0.875rem",
|
| 2661 |
-
},
|
| 2662 |
)
|
| 2663 |
-
|
| 2664 |
content = html.Div([count_info, table])
|
| 2665 |
-
|
| 2666 |
return {"display": "flex"}, modal_title, content
|
| 2667 |
|
| 2668 |
|
| 2669 |
-
# Callback to close root cause modal
|
| 2670 |
@callback(
|
| 2671 |
Output("root-cause-modal", "style", allow_duplicate=True),
|
| 2672 |
[Input("close-root-cause-modal-btn", "n_clicks")],
|
|
@@ -2675,10 +1970,10 @@ def open_root_cause_modal(n_clicks_list, selected_topic_data):
|
|
| 2675 |
def close_root_cause_modal(n_clicks):
|
| 2676 |
if n_clicks:
|
| 2677 |
return {"display": "none"}
|
| 2678 |
-
return
|
| 2679 |
|
| 2680 |
|
| 2681 |
-
#
|
| 2682 |
@callback(
|
| 2683 |
[
|
| 2684 |
Output("conversation-modal", "style", allow_duplicate=True),
|
|
@@ -2686,86 +1981,43 @@ def close_root_cause_modal(n_clicks):
|
|
| 2686 |
Output("conversation-subheader", "children", allow_duplicate=True),
|
| 2687 |
],
|
| 2688 |
[Input({"type": "open-chat-btn-rc", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 2689 |
-
[State("
|
| 2690 |
prevent_initial_call=True,
|
| 2691 |
)
|
| 2692 |
-
def open_conversation_from_root_cause_table(n_clicks_list,
|
| 2693 |
-
|
| 2694 |
-
if not any(n_clicks_list) or not file_contents:
|
| 2695 |
return {"display": "none"}, "", ""
|
| 2696 |
|
| 2697 |
-
# Get which button was clicked
|
| 2698 |
ctx = dash.callback_context
|
| 2699 |
if not ctx.triggered:
|
| 2700 |
return {"display": "none"}, "", ""
|
| 2701 |
-
|
| 2702 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 2703 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 2704 |
|
| 2705 |
-
|
| 2706 |
-
|
| 2707 |
-
decoded = base64.b64decode(content_string)
|
| 2708 |
-
|
| 2709 |
-
if (
|
| 2710 |
-
content_type
|
| 2711 |
-
== "data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64"
|
| 2712 |
-
):
|
| 2713 |
-
df_full = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 2714 |
-
else: # Assume CSV
|
| 2715 |
-
df_full = pd.read_csv(
|
| 2716 |
-
io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str}
|
| 2717 |
-
)
|
| 2718 |
-
|
| 2719 |
-
# Find the conversation with this chat ID
|
| 2720 |
conversation_row = df_full[df_full["id"] == chat_id]
|
| 2721 |
-
|
| 2722 |
-
# If not found, try converting types
|
| 2723 |
if len(conversation_row) == 0:
|
| 2724 |
conversation_row = df_full[df_full["id"].astype(str) == str(chat_id)]
|
| 2725 |
|
| 2726 |
-
if len(conversation_row) == 0:
|
| 2727 |
-
try:
|
| 2728 |
-
conversation_row = df_full[df_full["id"] == int(chat_id)]
|
| 2729 |
-
except (ValueError, TypeError):
|
| 2730 |
-
pass
|
| 2731 |
-
|
| 2732 |
if len(conversation_row) == 0:
|
| 2733 |
conversation_text = f"Conversation not found for Chat ID: {chat_id}"
|
| 2734 |
subheader_content = f"Chat ID: {chat_id} (Not Found)"
|
| 2735 |
else:
|
| 2736 |
row = conversation_row.iloc[0]
|
| 2737 |
conversation_text = row.get("conversation", "No conversation data available.")
|
| 2738 |
-
|
| 2739 |
-
# Get additional metadata
|
| 2740 |
root_cause = row.get("root_cause_subcluster", "Unknown")
|
| 2741 |
cluster_name = row.get("deduplicated_topic_name", "Unknown cluster")
|
| 2742 |
-
|
| 2743 |
-
|
| 2744 |
-
|
| 2745 |
-
|
| 2746 |
-
|
| 2747 |
-
f"Chat ID: {chat_id}",
|
| 2748 |
-
style={"fontWeight": "600", "marginRight": "1rem"},
|
| 2749 |
-
),
|
| 2750 |
-
html.Span(
|
| 2751 |
-
f"Cluster: {cluster_name}",
|
| 2752 |
-
style={"color": "hsl(215.4, 16.3%, 46.9%)", "marginRight": "1rem"},
|
| 2753 |
-
),
|
| 2754 |
-
html.Span(
|
| 2755 |
-
f"Root Cause: {root_cause}",
|
| 2756 |
-
style={"color": "#8b6f47", "fontWeight": "500"},
|
| 2757 |
-
),
|
| 2758 |
-
]
|
| 2759 |
-
)
|
| 2760 |
-
|
| 2761 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 2762 |
|
| 2763 |
-
# IMPORTANT: Expose the server for Gunicorn
|
| 2764 |
server = app.server
|
| 2765 |
|
| 2766 |
-
|
| 2767 |
-
# app.run(debug=False)
|
| 2768 |
-
|
| 2769 |
-
# IMPORTANT: Expose the server for Gunicorn, needed for HF Spaces
|
| 2770 |
-
if __name__ == '__main__':
|
| 2771 |
app.run_server(debug=True)
|
|
|
|
| 83 |
children="Sessions Observatory",
|
| 84 |
className="section-header",
|
| 85 |
),
|
|
|
|
| 86 |
dcc.Graph(
|
| 87 |
id="bubble-chart",
|
| 88 |
style={"height": "calc(100% - 154px)"},
|
| 89 |
+
),
|
| 90 |
html.Div(
|
| 91 |
[
|
|
|
|
| 92 |
html.Div(
|
| 93 |
[
|
| 94 |
html.Div(
|
|
|
|
| 101 |
],
|
| 102 |
className="control-labels-row",
|
| 103 |
),
|
|
|
|
| 104 |
html.Div(
|
| 105 |
[
|
| 106 |
html.Div(
|
|
|
|
| 185 |
html.I(
|
| 186 |
className="fas fa-info-circle",
|
| 187 |
title="Root cause detection is experimental and may require manual review since it is generated by AI models. Root causes are only shown in clusters with identifiable root causes.",
|
|
|
|
| 188 |
style={
|
| 189 |
"marginLeft": "0.2rem",
|
| 190 |
+
"color": "#6c757d",
|
| 191 |
"fontSize": "0.9rem",
|
| 192 |
"cursor": "pointer",
|
| 193 |
"verticalAlign": "middle",
|
|
|
|
| 202 |
),
|
| 203 |
],
|
| 204 |
id="root-causes-section",
|
| 205 |
+
style={"display": "none"},
|
|
|
|
|
|
|
| 206 |
),
|
| 207 |
# Added Tags section
|
| 208 |
html.Div(
|
|
|
|
| 217 |
),
|
| 218 |
],
|
| 219 |
id="tags-section",
|
| 220 |
+
style={"display": "none"},
|
|
|
|
|
|
|
| 221 |
),
|
| 222 |
],
|
| 223 |
className="details-section",
|
|
|
|
| 268 |
),
|
| 269 |
html.H3("No topic selected"),
|
| 270 |
html.P(
|
| 271 |
+
"Click a bubble to view topic details."
|
| 272 |
),
|
| 273 |
],
|
| 274 |
className="no-selection-message",
|
|
|
|
| 387 |
),
|
| 388 |
# Store the processed data
|
| 389 |
dcc.Store(id="stored-data"),
|
| 390 |
+
# NEW: Store for the minimal raw dataframe
|
| 391 |
+
dcc.Store(id="raw-data"),
|
| 392 |
# Store the current selected topic for dialogs modal
|
| 393 |
dcc.Store(id="selected-topic-store"),
|
| 394 |
# Store the current selected root cause for root cause modal
|
|
|
|
| 397 |
className="app-container",
|
| 398 |
)
|
| 399 |
|
| 400 |
+
# Define CSS for the app (no changes needed here, so it's omitted for brevity)
|
| 401 |
app.index_string = """
|
| 402 |
<!DOCTYPE html>
|
| 403 |
<html>
|
|
|
|
| 1221 |
)
|
| 1222 |
def update_topic_distribution_header(data):
|
| 1223 |
if not data:
|
| 1224 |
+
return "Sessions Observatory"
|
| 1225 |
|
| 1226 |
df = pd.DataFrame(data)
|
| 1227 |
+
total_dialogs = df["count"].sum()
|
| 1228 |
return f"Sessions Observatory ({total_dialogs} dialogs)"
|
| 1229 |
|
| 1230 |
|
|
|
|
| 1232 |
@callback(
|
| 1233 |
[
|
| 1234 |
Output("stored-data", "data"),
|
| 1235 |
+
Output("raw-data", "data"),
|
| 1236 |
Output("upload-status", "children"),
|
| 1237 |
+
Output("upload-status", "style"),
|
| 1238 |
Output("main-content", "style"),
|
| 1239 |
],
|
| 1240 |
[Input("upload-data", "contents")],
|
|
|
|
| 1242 |
)
|
| 1243 |
def process_upload(contents, filename):
|
| 1244 |
if contents is None:
|
| 1245 |
+
return None, None, "", {"display": "none"}, {"display": "none"}
|
| 1246 |
|
| 1247 |
try:
|
|
|
|
| 1248 |
content_type, content_string = contents.split(",")
|
| 1249 |
decoded = base64.b64decode(content_string)
|
| 1250 |
|
| 1251 |
if "csv" in filename.lower():
|
| 1252 |
+
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")), dtype={"Root_Cause": str})
|
| 1253 |
elif "xls" in filename.lower():
|
| 1254 |
+
df = pd.read_excel(io.BytesIO(decoded), dtype={"Root_Cause": str})
|
| 1255 |
+
else:
|
| 1256 |
+
return (
|
| 1257 |
+
None,
|
| 1258 |
+
None,
|
| 1259 |
+
html.Div(
|
| 1260 |
+
["Unsupported file. Please upload a CSV or Excel file."],
|
| 1261 |
+
style={"color": "var(--destructive)"},
|
| 1262 |
+
),
|
| 1263 |
+
{"display": "block"},
|
| 1264 |
+
{"display": "none"},
|
| 1265 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1266 |
|
|
|
|
| 1267 |
EXCLUDE_UNCLUSTERED = True
|
| 1268 |
if EXCLUDE_UNCLUSTERED and "deduplicated_topic_name" in df.columns:
|
| 1269 |
df = df[df["deduplicated_topic_name"] != "Unclustered"].copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1270 |
else:
|
| 1271 |
return (
|
| 1272 |
+
None,
|
| 1273 |
None,
|
| 1274 |
html.Div(
|
| 1275 |
+
["Please upload a CSV or Excel file with a 'deduplicated_topic_name' column."],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1276 |
style={"color": "var(--destructive)"},
|
| 1277 |
),
|
| 1278 |
+
{"display": "block"},
|
| 1279 |
{"display": "none"},
|
| 1280 |
)
|
| 1281 |
|
| 1282 |
+
# Compute aggregated topic stats once
|
| 1283 |
topic_stats = analyze_topics(df)
|
| 1284 |
|
| 1285 |
+
# Store only the columns you use elsewhere to keep payload smaller
|
| 1286 |
+
needed_cols = [
|
| 1287 |
+
"id",
|
| 1288 |
+
"conversation",
|
| 1289 |
+
"deduplicated_topic_name",
|
| 1290 |
+
"consolidated_tags",
|
| 1291 |
+
"Root_Cause",
|
| 1292 |
+
"root_cause_subcluster",
|
| 1293 |
+
"Sentiment",
|
| 1294 |
+
"Resolution",
|
| 1295 |
+
"Urgency",
|
| 1296 |
+
"Summary",
|
| 1297 |
+
]
|
| 1298 |
+
df_min = df[[c for c in needed_cols if c in df.columns]].copy()
|
| 1299 |
+
|
| 1300 |
return (
|
| 1301 |
topic_stats.to_dict("records"),
|
| 1302 |
+
df_min.to_dict("records"),
|
| 1303 |
html.Div(
|
| 1304 |
[
|
| 1305 |
html.I(
|
| 1306 |
className="fas fa-check-circle",
|
| 1307 |
+
style={"color": "hsl(142.1, 76.2%, 36.3%)", "marginRight": "8px"},
|
|
|
|
|
|
|
|
|
|
| 1308 |
),
|
| 1309 |
f'Successfully uploaded "{filename}"',
|
| 1310 |
],
|
| 1311 |
style={"color": "hsl(142.1, 76.2%, 36.3%)"},
|
| 1312 |
),
|
| 1313 |
+
{"display": "block"},
|
| 1314 |
+
{"display": "block", "height": "calc(100vh - 40px)"},
|
|
|
|
|
|
|
|
|
|
| 1315 |
)
|
| 1316 |
|
| 1317 |
except Exception as e:
|
| 1318 |
return (
|
| 1319 |
+
None,
|
| 1320 |
None,
|
| 1321 |
html.Div(
|
| 1322 |
[
|
|
|
|
| 1324 |
className="fas fa-exclamation-triangle",
|
| 1325 |
style={"color": "var(--destructive)", "marginRight": "8px"},
|
| 1326 |
),
|
| 1327 |
+
f"Error: {e}",
|
| 1328 |
],
|
| 1329 |
style={"color": "var(--destructive)"},
|
| 1330 |
),
|
| 1331 |
+
{"display": "block"},
|
| 1332 |
{"display": "none"},
|
| 1333 |
)
|
| 1334 |
|
| 1335 |
|
| 1336 |
# Function to analyze the topics and create statistics
|
| 1337 |
def analyze_topics(df):
|
|
|
|
| 1338 |
topic_stats = (
|
|
|
|
|
|
|
|
|
|
| 1339 |
df.groupby("deduplicated_topic_name")
|
| 1340 |
.agg(
|
| 1341 |
count=("id", "count"),
|
|
|
|
| 1345 |
)
|
| 1346 |
.reset_index()
|
| 1347 |
)
|
| 1348 |
+
topic_stats["negative_rate"] = (topic_stats["negative_count"] / topic_stats["count"] * 100).round(1)
|
| 1349 |
+
topic_stats["unresolved_rate"] = (topic_stats["unresolved_count"] / topic_stats["count"] * 100).round(1)
|
| 1350 |
+
topic_stats["urgent_rate"] = (topic_stats["urgent_count"] / topic_stats["count"] * 100).round(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1351 |
topic_stats = apply_binned_layout(topic_stats)
|
|
|
|
| 1352 |
return topic_stats
|
| 1353 |
|
| 1354 |
|
| 1355 |
+
# New binned layout function (no changes needed)
|
|
|
|
|
|
|
| 1356 |
def apply_binned_layout(df, padding=0, bin_config=None, max_items_per_row=6):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1357 |
df_sorted = df.copy()
|
|
|
|
|
|
|
|
|
|
| 1358 |
if bin_config is None:
|
| 1359 |
bin_config = [
|
| 1360 |
+
(100, None, "100+ dialogs"), (50, 99, "50-99 dialogs"),
|
| 1361 |
+
(25, 49, "25-49 dialogs"), (9, 24, "9-24 dialogs"),
|
| 1362 |
+
(7, 8, "7-8 dialogs"), (5, 6, "5-6 dialogs"),
|
| 1363 |
+
(4, 4, "4 dialogs"), (0, 3, "0-3 dialogs"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1364 |
]
|
|
|
|
|
|
|
| 1365 |
bin_descriptions = {}
|
| 1366 |
conditions = []
|
| 1367 |
bin_values = []
|
|
|
|
| 1368 |
for i, (lower, upper, description) in enumerate(bin_config):
|
| 1369 |
bin_name = f"Bin {i + 1}"
|
| 1370 |
bin_descriptions[bin_name] = description
|
| 1371 |
bin_values.append(bin_name)
|
| 1372 |
+
if upper is None:
|
|
|
|
| 1373 |
conditions.append(df_sorted["count"] >= lower)
|
| 1374 |
else:
|
| 1375 |
+
conditions.append((df_sorted["count"] >= lower) & (df_sorted["count"] <= upper))
|
| 1376 |
+
df_sorted["bin"] = np.select(conditions, bin_values, default=f"Bin {len(bin_config)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1377 |
df_sorted["bin_description"] = df_sorted["bin"].map(bin_descriptions)
|
|
|
|
|
|
|
| 1378 |
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
|
|
|
|
|
|
| 1379 |
original_bins = df_sorted["bin"].unique()
|
| 1380 |
new_rows = []
|
| 1381 |
new_bin_descriptions = bin_descriptions.copy()
|
|
|
|
| 1382 |
for bin_name in original_bins:
|
| 1383 |
bin_mask = df_sorted["bin"] == bin_name
|
| 1384 |
bin_group = df_sorted[bin_mask]
|
| 1385 |
bin_size = len(bin_group)
|
|
|
|
|
|
|
| 1386 |
if bin_size > max_items_per_row:
|
|
|
|
| 1387 |
num_sub_bins = (bin_size + max_items_per_row - 1) // max_items_per_row
|
|
|
|
|
|
|
| 1388 |
items_per_sub_bin = [bin_size // num_sub_bins] * num_sub_bins
|
|
|
|
|
|
|
| 1389 |
remainder = bin_size % num_sub_bins
|
| 1390 |
for i in range(remainder):
|
| 1391 |
items_per_sub_bin[i] += 1
|
|
|
|
|
|
|
| 1392 |
original_description = bin_descriptions[bin_name]
|
|
|
|
|
|
|
| 1393 |
start_idx = 0
|
| 1394 |
for i in range(num_sub_bins):
|
|
|
|
| 1395 |
new_bin_name = f"{bin_name}_{i + 1}"
|
|
|
|
|
|
|
| 1396 |
new_description = f"{original_description} ({i + 1}/{num_sub_bins})"
|
| 1397 |
new_bin_descriptions[new_bin_name] = new_description
|
|
|
|
|
|
|
| 1398 |
end_idx = start_idx + items_per_sub_bin[i]
|
| 1399 |
sub_bin_rows = bin_group.iloc[start_idx:end_idx].copy()
|
|
|
|
|
|
|
| 1400 |
sub_bin_rows["bin"] = new_bin_name
|
| 1401 |
sub_bin_rows["bin_description"] = new_description
|
|
|
|
|
|
|
| 1402 |
new_rows.append(sub_bin_rows)
|
|
|
|
|
|
|
| 1403 |
start_idx = end_idx
|
|
|
|
|
|
|
| 1404 |
df_sorted = df_sorted[~bin_mask]
|
|
|
|
|
|
|
| 1405 |
if new_rows:
|
| 1406 |
df_sorted = pd.concat([df_sorted] + new_rows)
|
|
|
|
|
|
|
| 1407 |
df_sorted = df_sorted.sort_values(by=["bin", "count"], ascending=[True, False])
|
|
|
|
|
|
|
| 1408 |
bins_with_topics = sorted(df_sorted["bin"].unique())
|
| 1409 |
num_rows = len(bins_with_topics)
|
|
|
|
| 1410 |
available_height = 100 - (2 * padding)
|
| 1411 |
row_height = available_height / num_rows
|
| 1412 |
+
row_positions = {bin_name: padding + i * row_height + (row_height / 2) for i, bin_name in enumerate(bins_with_topics)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1413 |
df_sorted["y"] = df_sorted["bin"].map(row_positions)
|
| 1414 |
+
center_point = 50
|
|
|
|
|
|
|
| 1415 |
for bin_name in bins_with_topics:
|
|
|
|
| 1416 |
bin_mask = df_sorted["bin"] == bin_name
|
| 1417 |
num_topics_in_bin = bin_mask.sum()
|
|
|
|
| 1418 |
if num_topics_in_bin == 1:
|
|
|
|
| 1419 |
df_sorted.loc[bin_mask, "x"] = center_point
|
| 1420 |
else:
|
| 1421 |
+
spacing = 17.5 if num_topics_in_bin < max_items_per_row else 15
|
| 1422 |
+
total_width = (num_topics_in_bin - 1) * spacing
|
| 1423 |
+
start_pos = center_point - (total_width / 2)
|
| 1424 |
+
positions = [start_pos + (i * spacing) for i in range(num_topics_in_bin)]
|
| 1425 |
+
df_sorted.loc[bin_mask, "x"] = positions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1426 |
df_sorted["size_rank"] = range(1, len(df_sorted) + 1)
|
|
|
|
| 1427 |
return df_sorted
|
| 1428 |
|
| 1429 |
|
| 1430 |
+
# function to update positions based on selected size metric (no changes needed)
|
| 1431 |
def update_bubble_positions(df: pd.DataFrame) -> pd.DataFrame:
|
|
|
|
| 1432 |
return apply_binned_layout(df)
|
| 1433 |
|
| 1434 |
|
| 1435 |
+
# Callback to update the bubble chart (no changes needed)
|
| 1436 |
@callback(
|
| 1437 |
Output("bubble-chart", "figure"),
|
| 1438 |
[
|
|
|
|
| 1446 |
|
| 1447 |
df = pd.DataFrame(data)
|
| 1448 |
|
| 1449 |
+
# Note: `update_bubble_positions` is now called inside `analyze_topics` once
|
| 1450 |
+
# and the results are stored. We don't call it here anymore.
|
| 1451 |
+
# The 'x' and 'y' values are already in the `data`.
|
| 1452 |
+
# df = update_bubble_positions(df) # This line can be removed if positions are pre-calculated
|
| 1453 |
|
|
|
|
| 1454 |
size_values = df["count"]
|
| 1455 |
raw_sizes = df["count"]
|
| 1456 |
size_title = "Dialog Count"
|
| 1457 |
+
min_size = 1
|
|
|
|
|
|
|
|
|
|
| 1458 |
if size_values.max() > size_values.min():
|
|
|
|
| 1459 |
log_sizes = np.log1p(size_values)
|
| 1460 |
+
size_values = (min_size + (log_sizes - log_sizes.min()) / (log_sizes.max() - log_sizes.min()) * 50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1461 |
else:
|
|
|
|
| 1462 |
size_values = np.ones(len(df)) * 12.5
|
| 1463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1464 |
if color_metric == "negative_rate":
|
| 1465 |
color_values = df["negative_rate"]
|
|
|
|
| 1466 |
color_title = "Negativity (%)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1467 |
color_scale = "Teal"
|
|
|
|
| 1468 |
elif color_metric == "unresolved_rate":
|
| 1469 |
color_values = df["unresolved_rate"]
|
| 1470 |
color_title = "Unresolved (%)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1471 |
color_scale = "Teal"
|
| 1472 |
+
else: # urgent_rate
|
| 1473 |
color_values = df["urgent_rate"]
|
| 1474 |
color_title = "Urgency (%)"
|
|
|
|
|
|
|
|
|
|
| 1475 |
color_scale = "Teal"
|
| 1476 |
|
|
|
|
| 1477 |
hover_text = [
|
| 1478 |
f"Topic: {topic}<br>{size_title}: {raw:.1f}<br>{color_title}: {color:.1f}<br>Group: {bin_desc}"
|
| 1479 |
+
for topic, raw, color, bin_desc in zip(df["deduplicated_topic_name"], raw_sizes, color_values, df["bin_description"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1480 |
]
|
| 1481 |
|
|
|
|
| 1482 |
fig = px.scatter(
|
| 1483 |
df,
|
| 1484 |
+
x="x", y="y",
|
|
|
|
| 1485 |
size=size_values,
|
| 1486 |
color=color_values,
|
|
|
|
| 1487 |
hover_name="deduplicated_topic_name",
|
| 1488 |
+
hover_data={"x": False, "y": False, "bin_description": True},
|
| 1489 |
+
size_max=42.5,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1490 |
color_continuous_scale=color_scale,
|
| 1491 |
+
custom_data=["deduplicated_topic_name", "count", "negative_rate", "unresolved_rate", "urgent_rate", "bin_description"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1492 |
)
|
| 1493 |
|
|
|
|
| 1494 |
fig.update_traces(
|
| 1495 |
+
mode="markers",
|
| 1496 |
marker=dict(sizemode="area", opacity=0.8, line=dict(width=1, color="white")),
|
| 1497 |
hovertemplate="%{hovertext}<extra></extra>",
|
| 1498 |
hovertext=hover_text,
|
| 1499 |
)
|
| 1500 |
|
|
|
|
| 1501 |
annotations = []
|
| 1502 |
for i, row in df.iterrows():
|
|
|
|
| 1503 |
words = row["deduplicated_topic_name"].split()
|
| 1504 |
+
wrapped_text = "<br>".join([" ".join(words[i : i + 4]) for i in range(0, len(words), 4)])
|
| 1505 |
+
# Use df.index.get_loc(i) to safely get the index position for size_values
|
| 1506 |
+
marker_size = (size_values[df.index.get_loc(i)] / 20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1507 |
annotations.append(
|
| 1508 |
dict(
|
| 1509 |
+
x=row["x"], y=row["y"] + 0.125 + marker_size,
|
| 1510 |
+
text=wrapped_text, showarrow=False, textangle=0,
|
| 1511 |
+
font=dict(size=9, color="var(--foreground)", family="Arial, sans-serif", weight="bold"),
|
| 1512 |
+
xanchor="center", yanchor="top",
|
| 1513 |
+
bgcolor="rgba(255,255,255,0.7)", bordercolor="rgba(0,0,0,0.1)",
|
| 1514 |
+
borderwidth=1, borderpad=1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1515 |
)
|
| 1516 |
)
|
| 1517 |
|
|
|
|
| 1518 |
unique_bins = sorted(df["bin"].unique())
|
| 1519 |
+
bin_y_positions = [df[df["bin"] == bin_name]["y"].mean() for bin_name in unique_bins]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1520 |
bin_descriptions = df.set_index("bin")["bin_description"].to_dict()
|
| 1521 |
|
| 1522 |
for bin_name, bin_y in zip(unique_bins, bin_y_positions):
|
| 1523 |
+
fig.add_shape(type="line", x0=0, y0=bin_y, x1=100, y1=bin_y, line=dict(color="rgba(0,0,0,0.1)", width=1, dash="dot"), layer="below")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1524 |
annotations.append(
|
| 1525 |
dict(
|
| 1526 |
+
x=0, y=bin_y, xref="x", yref="y",
|
| 1527 |
+
text=bin_descriptions[bin_name], showarrow=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1528 |
font=dict(size=8.25, color="var(--muted-foreground)"),
|
| 1529 |
+
align="left", xanchor="left", yanchor="middle",
|
| 1530 |
+
bgcolor="rgba(255,255,255,0.7)", borderpad=1,
|
|
|
|
|
|
|
|
|
|
| 1531 |
)
|
| 1532 |
)
|
| 1533 |
|
| 1534 |
fig.update_layout(
|
| 1535 |
title=None,
|
| 1536 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=None, range=[0, 100]),
|
| 1537 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, title=None, range=[0, 100], autorange="reversed"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1538 |
hovermode="closest",
|
| 1539 |
margin=dict(l=0, r=0, t=10, b=10),
|
| 1540 |
+
coloraxis_colorbar=dict(title=color_title, title_font=dict(size=9), tickfont=dict(size=8), thickness=10, len=0.6, yanchor="middle", y=0.5, xpad=0),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1541 |
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
| 1542 |
paper_bgcolor="rgba(0,0,0,0)",
|
| 1543 |
plot_bgcolor="rgba(0,0,0,0)",
|
| 1544 |
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Inter"),
|
| 1545 |
+
annotations=annotations,
|
| 1546 |
)
|
| 1547 |
|
| 1548 |
return fig
|
| 1549 |
|
| 1550 |
|
| 1551 |
+
# NEW: Update the topic details callback to be CLICK-ONLY and use the raw-data store
|
| 1552 |
@callback(
|
| 1553 |
[
|
| 1554 |
Output("topic-title", "children"),
|
|
|
|
| 1563 |
Output("selected-topic-store", "data"),
|
| 1564 |
],
|
| 1565 |
[
|
| 1566 |
+
Input("bubble-chart", "clickData"), # Changed from hoverData
|
|
|
|
| 1567 |
Input("refresh-dialogs-btn", "n_clicks"),
|
| 1568 |
],
|
| 1569 |
+
[State("stored-data", "data"), State("raw-data", "data")],
|
| 1570 |
)
|
| 1571 |
+
def update_topic_details(click_data, refresh_clicks, stored_data, raw_data):
|
| 1572 |
+
# This callback now only fires on click or refresh
|
| 1573 |
+
ctx = dash.callback_context
|
| 1574 |
+
triggered_id = ctx.triggered[0]["prop_id"].split(".")[0]
|
| 1575 |
+
|
| 1576 |
+
# If nothing triggered this, or data is missing, show the initial message
|
| 1577 |
+
if not triggered_id or not stored_data or not raw_data:
|
| 1578 |
+
return "", [], [], "", {"display": "none"}, "", {"display": "none"}, [], {"display": "flex"}, None
|
| 1579 |
+
|
| 1580 |
+
# We need to know which topic is currently selected if we are refreshing
|
| 1581 |
+
if triggered_id == "refresh-dialogs-btn":
|
| 1582 |
+
# To refresh, we would need to know the current topic. This requires
|
| 1583 |
+
# getting it from a store. For simplicity, we can just use the last clickData.
|
| 1584 |
+
# A more robust solution would use another dcc.Store for the *active* topic.
|
| 1585 |
+
# For now, if there is no click_data, a refresh does nothing.
|
| 1586 |
+
if not click_data:
|
| 1587 |
+
return dash.no_update
|
| 1588 |
+
|
| 1589 |
+
topic_name = click_data["points"][0]["customdata"][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1590 |
df_stored = pd.DataFrame(stored_data)
|
| 1591 |
topic_data = df_stored[df_stored["deduplicated_topic_name"] == topic_name].iloc[0]
|
| 1592 |
|
| 1593 |
+
# Use the pre-processed data from the store - this is the fast part!
|
| 1594 |
+
df_full = pd.DataFrame(raw_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1595 |
topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]
|
| 1596 |
|
| 1597 |
+
# --- From here, all the UI building code is the same ---
|
| 1598 |
title = html.Div([html.Span(topic_name)])
|
|
|
|
|
|
|
| 1599 |
metadata_items = [
|
| 1600 |
html.Div(
|
| 1601 |
[
|
|
|
|
| 1603 |
html.Span(f"{int(topic_data['count'])} dialogs"),
|
| 1604 |
html.Button(
|
| 1605 |
[
|
| 1606 |
+
html.I(className="fas fa-table", style={"marginRight": "0.25rem"}),
|
| 1607 |
+
"Show all dialogs",
|
|
|
|
|
|
|
| 1608 |
],
|
| 1609 |
id="show-all-dialogs-btn",
|
| 1610 |
className="show-dialogs-btn",
|
|
|
|
| 1615 |
style={"display": "flex", "alignItems": "center", "width": "100%"},
|
| 1616 |
),
|
| 1617 |
]
|
|
|
|
|
|
|
| 1618 |
metrics_boxes = [
|
| 1619 |
html.Div(
|
| 1620 |
[
|
|
|
|
| 1639 |
),
|
| 1640 |
]
|
| 1641 |
|
|
|
|
| 1642 |
root_causes_output = ""
|
| 1643 |
root_causes_section_style = {"display": "none"}
|
|
|
|
|
|
|
| 1644 |
if "root_cause_subcluster" in topic_conversations.columns:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1645 |
filtered_root_causes = [
|
| 1646 |
+
rc for rc in topic_conversations["root_cause_subcluster"].dropna().unique()
|
| 1647 |
+
if rc not in ["Sub-clustering disabled", "Not eligible for sub-clustering", "No valid root causes", "No Subcluster", "Unclustered", ""]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1648 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1649 |
if filtered_root_causes:
|
|
|
|
| 1650 |
root_causes_output = html.Div(
|
| 1651 |
[
|
| 1652 |
html.Div(
|
| 1653 |
[
|
| 1654 |
+
html.I(className="fas fa-exclamation-triangle root-cause-tag-icon"),
|
|
|
|
|
|
|
| 1655 |
html.Span(root_cause, style={"marginRight": "6px"}),
|
| 1656 |
html.I(
|
| 1657 |
className="fas fa-external-link-alt root-cause-click-icon",
|
| 1658 |
id={"type": "root-cause-icon", "index": root_cause},
|
| 1659 |
title="Click to see specific chats assigned with this root cause.",
|
| 1660 |
+
style={"cursor": "pointer", "fontSize": "0.55rem", "opacity": "0.8"},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1661 |
),
|
| 1662 |
],
|
| 1663 |
className="root-cause-tag",
|
|
|
|
| 1669 |
)
|
| 1670 |
root_causes_section_style = {"display": "block"}
|
| 1671 |
|
|
|
|
| 1672 |
tags_list = []
|
| 1673 |
+
if "consolidated_tags" in topic_conversations.columns:
|
| 1674 |
+
for tags_str in topic_conversations["consolidated_tags"].dropna():
|
| 1675 |
+
tags_list.extend([tag.strip() for tag in tags_str.split(",") if tag.strip()])
|
| 1676 |
+
|
|
|
|
|
|
|
|
|
|
| 1677 |
tag_counts = {}
|
| 1678 |
for tag in tags_list:
|
| 1679 |
tag_counts[tag] = tag_counts.get(tag, 0) + 1
|
| 1680 |
|
| 1681 |
+
sorted_tags = sorted(tag_counts.items(), key=lambda x: (-x[1], x[0]))[:15]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1682 |
|
|
|
|
| 1683 |
tags_section_style = {"display": "none"}
|
| 1684 |
if sorted_tags:
|
|
|
|
| 1685 |
tags_output = html.Div(
|
| 1686 |
[
|
| 1687 |
html.Div(
|
|
|
|
| 1698 |
tags_section_style = {"display": "block"}
|
| 1699 |
else:
|
| 1700 |
tags_output = html.Div(
|
| 1701 |
+
[html.I(className="fas fa-info-circle", style={"marginRight": "5px"}), "No tags found for this topic"],
|
|
|
|
|
|
|
|
|
|
| 1702 |
className="no-tags-message",
|
| 1703 |
)
|
| 1704 |
|
|
|
|
| 1705 |
sample_size = min(5, len(topic_conversations))
|
| 1706 |
if sample_size > 0:
|
| 1707 |
+
samples = topic_conversations.sample(n=sample_size)
|
|
|
|
|
|
|
| 1708 |
dialog_items = []
|
| 1709 |
for _, row in samples.iterrows():
|
| 1710 |
+
tags = [
|
| 1711 |
+
html.Span(row["Sentiment"], className="dialog-tag tag-sentiment"),
|
| 1712 |
+
html.Span(row["Resolution"], className="dialog-tag tag-resolution"),
|
| 1713 |
+
html.Span(row["Urgency"], className="dialog-tag tag-urgency"),
|
| 1714 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1715 |
if "id" in row:
|
| 1716 |
+
tags.append(html.Span(
|
| 1717 |
+
[f"Chat ID: {row['id']} ", html.I(className="fas fa-arrow-up-right-from-square conversation-icon", id={"type": "conversation-icon", "index": row["id"]}, title="View full conversation", style={"marginLeft": "0.25rem"})],
|
| 1718 |
+
className="dialog-tag tag-chat-id", style={"display": "inline-flex", "alignItems": "center"}
|
| 1719 |
+
))
|
| 1720 |
+
if "Root_Cause" in row and pd.notna(row["Root_Cause"]) and row["Root_Cause"] != "na":
|
| 1721 |
+
tags.append(html.Span(f"Root Cause: {row['Root_Cause']}", className="dialog-tag tag-root-cause"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1722 |
|
| 1723 |
dialog_items.append(
|
| 1724 |
html.Div(
|
| 1725 |
+
[html.Div(row["Summary"], className="dialog-summary"), html.Div(tags, className="dialog-metadata")],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1726 |
className="dialog-item",
|
| 1727 |
)
|
| 1728 |
)
|
|
|
|
| 1729 |
sample_dialogs = dialog_items
|
| 1730 |
else:
|
| 1731 |
+
sample_dialogs = [html.Div("No sample dialogs available for this topic.", style={"color": "var(--muted-foreground)"})]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1732 |
|
| 1733 |
return (
|
| 1734 |
title,
|
|
|
|
| 1740 |
tags_section_style,
|
| 1741 |
sample_dialogs,
|
| 1742 |
{"display": "none"},
|
| 1743 |
+
{"topic_name": topic_name}, # Pass only the topic name
|
| 1744 |
)
|
| 1745 |
|
| 1746 |
|
| 1747 |
+
# NEW: Updated to use raw-data store
|
| 1748 |
@callback(
|
| 1749 |
[
|
| 1750 |
Output("conversation-modal", "style"),
|
|
|
|
| 1752 |
Output("conversation-subheader", "children"),
|
| 1753 |
],
|
| 1754 |
[Input({"type": "conversation-icon", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 1755 |
+
[State("raw-data", "data")],
|
| 1756 |
prevent_initial_call=True,
|
| 1757 |
)
|
| 1758 |
+
def open_conversation_modal(n_clicks_list, raw_data):
|
| 1759 |
+
if not any(n_clicks_list) or not raw_data:
|
|
|
|
| 1760 |
return {"display": "none"}, "", ""
|
| 1761 |
|
|
|
|
| 1762 |
ctx = dash.callback_context
|
| 1763 |
if not ctx.triggered:
|
| 1764 |
+
return {"display": "none"}, "", ""
|
| 1765 |
+
|
|
|
|
|
|
|
|
|
|
| 1766 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 1767 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 1768 |
|
| 1769 |
+
df_full = pd.DataFrame(raw_data)
|
| 1770 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1771 |
conversation_row = df_full[df_full["id"] == chat_id]
|
| 1772 |
if len(conversation_row) == 0:
|
| 1773 |
conversation_text = "Conversation not found."
|
|
|
|
| 1775 |
else:
|
| 1776 |
row = conversation_row.iloc[0]
|
| 1777 |
conversation_text = row.get("conversation", "No conversation data available.")
|
|
|
|
|
|
|
| 1778 |
cluster_name = row.get("deduplicated_topic_name", "Unknown cluster")
|
|
|
|
|
|
|
| 1779 |
subheader_content = html.Div(
|
| 1780 |
[
|
| 1781 |
+
html.Span(f"Chat ID: {chat_id}", style={"fontWeight": "600", "marginRight": "1rem"}),
|
| 1782 |
+
html.Span(f"Cluster: {cluster_name}", style={"color": "hsl(215.4, 16.3%, 46.9%)"}),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1783 |
]
|
| 1784 |
)
|
|
|
|
| 1785 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 1786 |
|
| 1787 |
|
| 1788 |
+
# Callback to close modal (no changes needed)
|
| 1789 |
@callback(
|
| 1790 |
Output("conversation-modal", "style", allow_duplicate=True),
|
| 1791 |
[Input("close-modal-btn", "n_clicks")],
|
|
|
|
| 1794 |
def close_conversation_modal(n_clicks):
|
| 1795 |
if n_clicks:
|
| 1796 |
return {"display": "none"}
|
| 1797 |
+
return dash.no_update
|
| 1798 |
|
| 1799 |
|
| 1800 |
+
# NEW: Updated to use raw-data store
|
| 1801 |
@callback(
|
| 1802 |
[
|
| 1803 |
Output("dialogs-table-modal", "style"),
|
|
|
|
| 1805 |
Output("dialogs-table-content", "children"),
|
| 1806 |
],
|
| 1807 |
[Input("show-all-dialogs-btn", "n_clicks")],
|
| 1808 |
+
[State("selected-topic-store", "data"), State("raw-data", "data")],
|
| 1809 |
prevent_initial_call=True,
|
| 1810 |
)
|
| 1811 |
+
def open_dialogs_table_modal(n_clicks, selected_topic_data, raw_data):
|
| 1812 |
+
if not n_clicks or not selected_topic_data or not raw_data:
|
| 1813 |
return {"display": "none"}, "", ""
|
| 1814 |
|
| 1815 |
topic_name = selected_topic_data["topic_name"]
|
| 1816 |
+
df_full = pd.DataFrame(raw_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1817 |
|
|
|
|
| 1818 |
topic_conversations = df_full[df_full["deduplicated_topic_name"] == topic_name]
|
| 1819 |
+
|
| 1820 |
+
table_rows = [
|
| 1821 |
+
html.Tr([
|
| 1822 |
+
html.Th("Chat ID"), html.Th("Summary"), html.Th("Root Cause"),
|
| 1823 |
+
html.Th("Sentiment"), html.Th("Resolution"), html.Th("Urgency"),
|
| 1824 |
+
html.Th("Tags"), html.Th("Action"),
|
| 1825 |
+
])
|
| 1826 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1827 |
for _, row in topic_conversations.iterrows():
|
| 1828 |
+
tags_display = "No tags"
|
| 1829 |
+
if "consolidated_tags" in row and pd.notna(row["consolidated_tags"]):
|
| 1830 |
+
tags = [tag.strip() for tag in row["consolidated_tags"].split(",") if tag.strip()]
|
| 1831 |
+
tags_display = html.Div([
|
| 1832 |
+
html.Span(tag, className="dialog-tag-small", style={"backgroundColor": "#6c757d", "color": "white"}) for tag in tags[:3]
|
| 1833 |
+
] + ([html.Span(f"+{len(tags) - 3}", className="dialog-tag-small", style={"backgroundColor": "#6c757d", "color": "white"})] if len(tags) > 3 else []))
|
| 1834 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1835 |
table_rows.append(
|
| 1836 |
+
html.Tr([
|
| 1837 |
+
html.Td(row["id"], style={"fontFamily": "monospace", "fontSize": "0.8rem"}),
|
| 1838 |
+
html.Td(row.get("Summary", "No summary"), className="dialog-summary-cell"),
|
| 1839 |
+
html.Td(html.Span(str(row.get("Root_Cause", "Unknown")).capitalize() if pd.notna(row.get("Root_Cause")) else "Unknown", className="dialog-tag-small", style={"backgroundColor": "#8B4513", "color": "white"})),
|
| 1840 |
+
html.Td(html.Span(row.get("Sentiment", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Sentiment") == "negative" else "#6c757d", "color": "white"})),
|
| 1841 |
+
html.Td(html.Span(row.get("Resolution", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Resolution") == "unresolved" else "#6c757d", "color": "white"})),
|
| 1842 |
+
html.Td(html.Span(row.get("Urgency", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Urgency") == "urgent" else "#6c757d", "color": "white"})),
|
| 1843 |
+
html.Td(tags_display, className="dialog-tags-cell"),
|
| 1844 |
+
html.Td(html.Button([html.I(className="fas fa-eye", style={"marginRight": "0.25rem"}), "View chat"], id={"type": "open-chat-btn", "index": row["id"]}, className="open-chat-btn")),
|
| 1845 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1846 |
)
|
|
|
|
| 1847 |
table = html.Table(table_rows, className="dialogs-table")
|
| 1848 |
+
modal_title = f"All dialogs in Topic: {topic_name} ({len(topic_conversations)} dialogs)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1849 |
return {"display": "flex"}, modal_title, table
|
| 1850 |
|
| 1851 |
|
| 1852 |
+
# Callback to close dialogs table modal (no changes needed)
|
| 1853 |
@callback(
|
| 1854 |
Output("dialogs-table-modal", "style", allow_duplicate=True),
|
| 1855 |
[Input("close-dialogs-modal-btn", "n_clicks")],
|
|
|
|
| 1858 |
def close_dialogs_table_modal(n_clicks):
|
| 1859 |
if n_clicks:
|
| 1860 |
return {"display": "none"}
|
| 1861 |
+
return dash.no_update
|
| 1862 |
|
| 1863 |
|
| 1864 |
+
# NEW: Updated to use raw-data store
|
| 1865 |
@callback(
|
| 1866 |
[
|
| 1867 |
Output("conversation-modal", "style", allow_duplicate=True),
|
|
|
|
| 1869 |
Output("conversation-subheader", "children", allow_duplicate=True),
|
| 1870 |
],
|
| 1871 |
[Input({"type": "open-chat-btn", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 1872 |
+
[State("raw-data", "data")],
|
| 1873 |
prevent_initial_call=True,
|
| 1874 |
)
|
| 1875 |
+
def open_conversation_from_table(n_clicks_list, raw_data):
|
| 1876 |
+
if not any(n_clicks_list) or not raw_data:
|
|
|
|
| 1877 |
return {"display": "none"}, "", ""
|
| 1878 |
|
|
|
|
| 1879 |
ctx = dash.callback_context
|
| 1880 |
if not ctx.triggered:
|
| 1881 |
return {"display": "none"}, "", ""
|
| 1882 |
|
|
|
|
| 1883 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 1884 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 1885 |
|
| 1886 |
+
df_full = pd.DataFrame(raw_data)
|
| 1887 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1888 |
conversation_row = df_full[df_full["id"] == chat_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1889 |
if len(conversation_row) == 0:
|
| 1890 |
+
conversation_text = f"Conversation not found for Chat ID: {chat_id}"
|
| 1891 |
subheader_content = f"Chat ID: {chat_id} (Not Found)"
|
| 1892 |
else:
|
| 1893 |
+
row = conversation_row.iloc[0]
|
| 1894 |
+
conversation_text = row.get("conversation", "No conversation data available.")
|
| 1895 |
+
subheader_content = f"Chat ID: {chat_id} | Topic: {row.get('deduplicated_topic_name', 'Unknown')} | Sentiment: {row.get('Sentiment', 'Unknown')} | Resolution: {row.get('Resolution', 'Unknown')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1896 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 1897 |
|
| 1898 |
|
| 1899 |
+
# NEW: Updated to use raw-data store
|
| 1900 |
@callback(
|
| 1901 |
[
|
| 1902 |
Output("root-cause-modal", "style"),
|
|
|
|
| 1904 |
Output("root-cause-table-content", "children"),
|
| 1905 |
],
|
| 1906 |
[Input({"type": "root-cause-icon", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 1907 |
+
[State("selected-topic-store", "data"), State("raw-data", "data")],
|
| 1908 |
prevent_initial_call=True,
|
| 1909 |
)
|
| 1910 |
+
def open_root_cause_modal(n_clicks_list, selected_topic_data, raw_data):
|
| 1911 |
+
if not any(n_clicks_list) or not selected_topic_data or not raw_data:
|
|
|
|
| 1912 |
return {"display": "none"}, "", ""
|
| 1913 |
|
|
|
|
| 1914 |
ctx = dash.callback_context
|
| 1915 |
if not ctx.triggered:
|
| 1916 |
return {"display": "none"}, "", ""
|
| 1917 |
|
| 1918 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 1919 |
root_cause = json.loads(triggered_id.split(".")[0])["index"]
|
|
|
|
| 1920 |
topic_name = selected_topic_data["topic_name"]
|
| 1921 |
+
df_full = pd.DataFrame(raw_data)
|
| 1922 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1923 |
filtered_conversations = df_full[
|
| 1924 |
(df_full["deduplicated_topic_name"] == topic_name)
|
| 1925 |
& (df_full["root_cause_subcluster"] == root_cause)
|
| 1926 |
]
|
| 1927 |
|
| 1928 |
+
table_rows = [
|
| 1929 |
+
html.Tr([
|
| 1930 |
+
html.Th("Chat ID"), html.Th("Summary"), html.Th("Sentiment"),
|
| 1931 |
+
html.Th("Resolution"), html.Th("Urgency"), html.Th("Tags"), html.Th("Action"),
|
| 1932 |
+
])
|
| 1933 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1934 |
for _, row in filtered_conversations.iterrows():
|
| 1935 |
+
tags_display = "No tags"
|
| 1936 |
+
if "consolidated_tags" in row and pd.notna(row["consolidated_tags"]):
|
| 1937 |
+
tags = [tag.strip() for tag in row["consolidated_tags"].split(",") if tag.strip()]
|
| 1938 |
+
tags_display = html.Div([
|
| 1939 |
+
html.Span(tag, className="dialog-tag-small", style={"backgroundColor": "#6c757d", "color": "white"}) for tag in tags[:3]
|
| 1940 |
+
] + ([html.Span(f"+{len(tags) - 3}", className="dialog-tag-small", style={"backgroundColor": "#6c757d", "color": "white"})] if len(tags) > 3 else []))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1941 |
|
| 1942 |
table_rows.append(
|
| 1943 |
+
html.Tr([
|
| 1944 |
+
html.Td(row["id"], style={"fontFamily": "monospace", "fontSize": "0.8rem"}),
|
| 1945 |
+
html.Td(row.get("Summary", "No summary"), className="dialog-summary-cell"),
|
| 1946 |
+
html.Td(html.Span(row.get("Sentiment", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Sentiment") == "negative" else "#6c757d", "color": "white"})),
|
| 1947 |
+
html.Td(html.Span(row.get("Resolution", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Resolution") == "unresolved" else "#6c757d", "color": "white"})),
|
| 1948 |
+
html.Td(html.Span(row.get("Urgency", "Unknown").capitalize(), className="dialog-tag-small", style={"backgroundColor": "#dc3545" if row.get("Urgency") == "urgent" else "#6c757d", "color": "white"})),
|
| 1949 |
+
html.Td(tags_display, className="dialog-tags-cell"),
|
| 1950 |
+
html.Td(html.Button([html.I(className="fas fa-eye", style={"marginRight": "0.25rem"}), "View chat"], id={"type": "open-chat-btn-rc", "index": row["id"]}, className="open-chat-btn")),
|
| 1951 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1952 |
)
|
| 1953 |
+
|
| 1954 |
table = html.Table(table_rows, className="dialogs-table")
|
| 1955 |
+
modal_title = f"Dialogs for Root Cause: {root_cause} (in Topic: {topic_name})"
|
|
|
|
| 1956 |
count_info = html.P(
|
| 1957 |
+
f"Found {len(filtered_conversations)} dialogs with this root cause.",
|
| 1958 |
+
style={"margin": "0 0 1rem 0", "color": "var(--muted-foreground)", "fontSize": "0.875rem"},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1959 |
)
|
|
|
|
| 1960 |
content = html.Div([count_info, table])
|
|
|
|
| 1961 |
return {"display": "flex"}, modal_title, content
|
| 1962 |
|
| 1963 |
|
| 1964 |
+
# Callback to close root cause modal (no changes needed)
|
| 1965 |
@callback(
|
| 1966 |
Output("root-cause-modal", "style", allow_duplicate=True),
|
| 1967 |
[Input("close-root-cause-modal-btn", "n_clicks")],
|
|
|
|
| 1970 |
def close_root_cause_modal(n_clicks):
|
| 1971 |
if n_clicks:
|
| 1972 |
return {"display": "none"}
|
| 1973 |
+
return dash.no_update
|
| 1974 |
|
| 1975 |
|
| 1976 |
+
# NEW: Updated to use raw-data store
|
| 1977 |
@callback(
|
| 1978 |
[
|
| 1979 |
Output("conversation-modal", "style", allow_duplicate=True),
|
|
|
|
| 1981 |
Output("conversation-subheader", "children", allow_duplicate=True),
|
| 1982 |
],
|
| 1983 |
[Input({"type": "open-chat-btn-rc", "index": dash.dependencies.ALL}, "n_clicks")],
|
| 1984 |
+
[State("raw-data", "data")],
|
| 1985 |
prevent_initial_call=True,
|
| 1986 |
)
|
| 1987 |
+
def open_conversation_from_root_cause_table(n_clicks_list, raw_data):
|
| 1988 |
+
if not any(n_clicks_list) or not raw_data:
|
|
|
|
| 1989 |
return {"display": "none"}, "", ""
|
| 1990 |
|
|
|
|
| 1991 |
ctx = dash.callback_context
|
| 1992 |
if not ctx.triggered:
|
| 1993 |
return {"display": "none"}, "", ""
|
| 1994 |
+
|
| 1995 |
triggered_id = ctx.triggered[0]["prop_id"]
|
| 1996 |
chat_id = json.loads(triggered_id.split(".")[0])["index"]
|
| 1997 |
|
| 1998 |
+
df_full = pd.DataFrame(raw_data)
|
| 1999 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2000 |
conversation_row = df_full[df_full["id"] == chat_id]
|
|
|
|
|
|
|
| 2001 |
if len(conversation_row) == 0:
|
| 2002 |
conversation_row = df_full[df_full["id"].astype(str) == str(chat_id)]
|
| 2003 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2004 |
if len(conversation_row) == 0:
|
| 2005 |
conversation_text = f"Conversation not found for Chat ID: {chat_id}"
|
| 2006 |
subheader_content = f"Chat ID: {chat_id} (Not Found)"
|
| 2007 |
else:
|
| 2008 |
row = conversation_row.iloc[0]
|
| 2009 |
conversation_text = row.get("conversation", "No conversation data available.")
|
|
|
|
|
|
|
| 2010 |
root_cause = row.get("root_cause_subcluster", "Unknown")
|
| 2011 |
cluster_name = row.get("deduplicated_topic_name", "Unknown cluster")
|
| 2012 |
+
subheader_content = html.Div([
|
| 2013 |
+
html.Span(f"Chat ID: {chat_id}", style={"fontWeight": "600", "marginRight": "1rem"}),
|
| 2014 |
+
html.Span(f"Cluster: {cluster_name}", style={"color": "hsl(215.4, 16.3%, 46.9%)", "marginRight": "1rem"}),
|
| 2015 |
+
html.Span(f"Root Cause: {root_cause}", style={"color": "#8b6f47", "fontWeight": "500"}),
|
| 2016 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2017 |
return {"display": "flex"}, conversation_text, subheader_content
|
| 2018 |
|
| 2019 |
+
# IMPORTANT: Expose the server for Gunicorn
|
| 2020 |
server = app.server
|
| 2021 |
|
| 2022 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2023 |
app.run_server(debug=True)
|