ShukaNote / app.py
helvekami's picture
Update app.py
7638418 verified
import transformers
import gradio as gr
import librosa
import torch
import spaces
import numpy as np
import tempfile
@spaces.GPU(duration=60)
def transcribe_and_respond(audio_file, email):
try:
pipe = transformers.pipeline(
model='sarvamai/shuka_v1',
trust_remote_code=True,
device=0,
torch_dtype=torch.bfloat16
)
# Load the audio file at 16kHz
audio, sr = librosa.load(audio_file, sr=16000)
# Convert the audio to a contiguous float32 array
audio = np.ascontiguousarray(audio, dtype=np.float32)
# If audio is multi-channel, convert to mono by averaging channels
if audio.ndim > 1:
audio = np.mean(audio, axis=-1)
# Debug: Print audio properties
print(f"Audio dtype: {audio.dtype}, Audio shape: {audio.shape}, Sample rate: {sr}")
# Set up the prompt to get key takeaways
turns = [
{'role': 'system', 'content': 'You are an exact echo assistant. Output the previous text exactly as given, without any modifications.'},
{'role': 'user', 'content': '<|audio|>'}
]
print(f"Initial turns: {turns}")
# Run the model inference (this call is synchronous)
output = pipe({'audio': audio, 'turns': turns, 'sampling_rate': sr}, max_new_tokens=10000)
print(f"Model output: {output}")
# Extract transcript text from the output
transcript = str(output)
if email and email.strip():
transcript = f"Email provided: {email}\n\n{transcript}"
# Write the transcript to a temporary file for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as tmp:
tmp.write(transcript)
transcript_file = tmp.name
# Return transcript text and file download path
return transcript, transcript_file
except Exception as e:
return f"Error: {str(e)}", ""
iface = gr.Interface(
fn=transcribe_and_respond,
inputs=[
gr.Audio(sources=["upload", "microphone"], type="filepath"),
# gr.Textbox(label="Email", placeholder="Enter your email address (optional)")
],
outputs=[
gr.Textbox(label="Transcript"),
gr.File(label="Download Transcript")
],
title="ShukaNotesApp",
description="Upload or record your meeting audio, and download the transcript."
)
if __name__ == "__main__":
iface.launch()