Spaces:
Runtime error
Runtime error
tomas.helmfridsson
commited on
Commit
·
407ce33
1
Parent(s):
3d5c39a
new model
Browse files- .gitignore +25 -0
- app.py +8 -7
- requirements.txt +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*.pyo
|
| 5 |
+
*.pyd
|
| 6 |
+
|
| 7 |
+
# OS-filer
|
| 8 |
+
.DS_Store
|
| 9 |
+
Thumbs.db
|
| 10 |
+
|
| 11 |
+
# Hugging Face cache eller stora modeller
|
| 12 |
+
*.bin
|
| 13 |
+
*.pt
|
| 14 |
+
*.onnx
|
| 15 |
+
*.safetensors
|
| 16 |
+
|
| 17 |
+
# Loggar och tillfälliga filer
|
| 18 |
+
*.log
|
| 19 |
+
*.zip
|
| 20 |
+
*.tmp
|
| 21 |
+
*.cache/
|
| 22 |
+
|
| 23 |
+
# Lokala miljöinställningar
|
| 24 |
+
.env
|
| 25 |
+
.venv
|
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain_community.document_loaders import PyPDFLoader
|
| 3 |
from langchain_community.vectorstores import FAISS
|
| 4 |
-
from
|
| 5 |
from langchain_community.llms import HuggingFacePipeline
|
| 6 |
from langchain.chains import RetrievalQA
|
| 7 |
from transformers import pipeline
|
|
@@ -10,9 +10,9 @@ import os
|
|
| 10 |
# 1. Ladda och indexera alla PDF:er i mappen "dokument/"
|
| 11 |
def load_vectorstore():
|
| 12 |
all_docs = []
|
| 13 |
-
for filename in os.listdir("
|
| 14 |
if filename.endswith(".pdf"):
|
| 15 |
-
path = os.path.join("
|
| 16 |
loader = PyPDFLoader(path)
|
| 17 |
docs = loader.load_and_split()
|
| 18 |
all_docs.extend(docs)
|
|
@@ -21,12 +21,13 @@ def load_vectorstore():
|
|
| 21 |
|
| 22 |
vectorstore = load_vectorstore()
|
| 23 |
|
| 24 |
-
# 2. Initiera
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
return HuggingFacePipeline(pipeline=pipe, model_kwargs={"temperature": 0.3, "max_new_tokens": 512})
|
| 28 |
|
| 29 |
-
llm =
|
| 30 |
|
| 31 |
# 3. Bygg QA-kedjan
|
| 32 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain_community.document_loaders import PyPDFLoader
|
| 3 |
from langchain_community.vectorstores import FAISS
|
| 4 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
| 5 |
from langchain_community.llms import HuggingFacePipeline
|
| 6 |
from langchain.chains import RetrievalQA
|
| 7 |
from transformers import pipeline
|
|
|
|
| 10 |
# 1. Ladda och indexera alla PDF:er i mappen "dokument/"
|
| 11 |
def load_vectorstore():
|
| 12 |
all_docs = []
|
| 13 |
+
for filename in os.listdir("dokument"):
|
| 14 |
if filename.endswith(".pdf"):
|
| 15 |
+
path = os.path.join("dokument", filename)
|
| 16 |
loader = PyPDFLoader(path)
|
| 17 |
docs = loader.load_and_split()
|
| 18 |
all_docs.extend(docs)
|
|
|
|
| 21 |
|
| 22 |
vectorstore = load_vectorstore()
|
| 23 |
|
| 24 |
+
# 2. Initiera en mindre modell
|
| 25 |
+
|
| 26 |
+
def load_model():
|
| 27 |
+
pipe = pipeline("text-generation", model="google/gemma-2b-it")
|
| 28 |
return HuggingFacePipeline(pipeline=pipe, model_kwargs={"temperature": 0.3, "max_new_tokens": 512})
|
| 29 |
|
| 30 |
+
llm = load_model()
|
| 31 |
|
| 32 |
# 3. Bygg QA-kedjan
|
| 33 |
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever())
|
requirements.txt
CHANGED
|
@@ -2,6 +2,7 @@ huggingface_hub==0.25.2
|
|
| 2 |
gradio
|
| 3 |
langchain[all]>=0.1.14
|
| 4 |
langchain-community>=0.0.19
|
|
|
|
| 5 |
transformers
|
| 6 |
sentence-transformers
|
| 7 |
faiss-cpu
|
|
|
|
| 2 |
gradio
|
| 3 |
langchain[all]>=0.1.14
|
| 4 |
langchain-community>=0.0.19
|
| 5 |
+
langchain-huggingface>=0.0.6
|
| 6 |
transformers
|
| 7 |
sentence-transformers
|
| 8 |
faiss-cpu
|