helkoo commited on
Commit
67ef4bf
·
1 Parent(s): dc7ec8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -6
app.py CHANGED
@@ -11,17 +11,42 @@ openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
11
  controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
12
  pipe = StableDiffusionControlNetPipeline.from_pretrained("helkoo/jelaba_2HR", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16)
13
 
14
- #optimizations
15
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
16
- pipe.enable_xformers_memory_efficient_attention()
17
- pipe.enable_model_cpu_offload()
18
-
19
 
20
  def generate(image,prompt):
21
  image = openpose(image)
22
- print(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  image = pipe(prompt, image, num_inference_steps=20).images[0]
24
  return image
25
 
26
- gr.Interface(fn=generate, inputs=["image","text"], outputs="image").launch(share=True)
 
 
 
 
27
 
 
11
  controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
12
  pipe = StableDiffusionControlNetPipeline.from_pretrained("helkoo/jelaba_2HR", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16)
13
 
14
+ #optimizations
15
  pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
16
+ #pipe.enable_xformers_memory_efficient_attention()
17
+ #pipe.enable_model_cpu_offload()
18
+ pipe = pipe.to("cuda")
19
 
20
  def generate(image,prompt):
21
  image = openpose(image)
22
+ #image = image
23
+ image = pipe(prompt, image, num_inference_steps=20).images[0]
24
+ return image
25
+
26
+ gr.Interface(fn=generate, inputs=["image","text"], outputs="image").launch(share=True, debug=True)
27
+
28
+ import numpy as np
29
+ import requests
30
+ def generate2(prompt,taille):
31
+ if taille == "S":
32
+ image = Image.open(requests.get('https://mode-et-caftan.com/757-large_default/jellaba-salsa-marocaine-femme.jpg', stream=True).raw)
33
+
34
+ if taille == "XL":
35
+ image = Image.open(requests.get('https://i.pinimg.com/236x/03/f1/36/03f136b83bb37c9f17c3764f1b36f9fa--big-is-beautiful-curvy-fashion.jpg', stream=True).raw)
36
+
37
+ if taille == "L":
38
+ image = Image.open(requests.get('https://mode-et-caftan.com/757-large_default/jellaba-salsa-marocaine-femme.jpg', stream=True).raw)
39
+
40
+ # convert image to numpy array
41
+ image = np.array(image)
42
+ image = openpose(image)
43
+ #image = image
44
  image = pipe(prompt, image, num_inference_steps=20).images[0]
45
  return image
46
 
47
+ gr.Interface(fn=generate2, inputs=["text",
48
+ gr.Dropdown(
49
+ ["S", "L", "XL"], label="taille", info="choisie la taille"
50
+ ),
51
+ ], outputs="image").launch(share=True, debug=True)
52