Spaces:
Sleeping
Sleeping
import os | |
import datetime | |
import requests | |
import pandas as pd | |
import gradio as gr | |
from openai import OpenAI | |
class ToolEnhancedAgent: | |
def __init__(self): | |
api_key = os.getenv("OPENAI_API_KEY") | |
if not api_key: | |
raise ValueError("OPENAI_API_KEY not found in environment variables.") | |
self.client = OpenAI(api_key=api_key) | |
print("ToolEnhancedAgent initialized.") | |
def use_tool(self, tool_name: str, input_text: str) -> str: | |
try: | |
if tool_name == "calculator": | |
# Sangat dasar dan raw eval, hati2 di produksi | |
return str(eval(input_text)) | |
elif tool_name == "date": | |
return str(datetime.datetime.now().date()) | |
elif tool_name == "wikipedia": | |
return self.search_wikipedia(input_text) | |
else: | |
return "[Unknown tool]" | |
except Exception as e: | |
return f"[Tool error: {e}]" | |
def search_wikipedia(self, query: str) -> str: | |
try: | |
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}" | |
res = requests.get(url) | |
if res.status_code == 200: | |
return res.json().get("extract", "No summary found.") | |
else: | |
return f"No Wikipedia summary for '{query}'." | |
except Exception as e: | |
return f"Wikipedia API error: {e}" | |
def __call__(self, question: str) -> str: | |
# Prompt dengan chain of thought agar GPT berpikir langkah demi langkah | |
prompt = ( | |
"You are an assistant that solves problems step-by-step, and you can use tools like calculator, date, and wikipedia if needed.\n" | |
f"Question: {question}\n" | |
"Answer (think step-by-step and use tools if helpful):" | |
) | |
try: | |
response = self.client.chat.completions.create( | |
model="gpt-4o-mini", # model yang lebih ringan dan biasanya cukup | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that thinks step-by-step and can use tools."}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=0.2, | |
max_tokens=700, | |
) | |
answer = response.choices[0].message.content.strip() | |
print(f"Generated answer (preview): {answer[:100]}...") | |
return answer | |
except Exception as e: | |
print(f"Agent error: {e}") | |
return f"[Agent error: {e}]" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
if profile is None: | |
return "Please login to Hugging Face to submit answers.", None | |
username = profile.username | |
api_url = "https://agents-course-unit4-scoring.hf.space" | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = ToolEnhancedAgent() | |
except Exception as e: | |
return f"Agent initialization error: {e}", None | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions = response.json() | |
if not isinstance(questions, list) or len(questions) == 0: | |
return "Failed to fetch questions or empty list.", None | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
answers = [] | |
results_log = [] | |
for item in questions: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
answer = agent(question_text) | |
answers.append({"task_id": task_id, "submitted_answer": answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": answer | |
}) | |
except Exception as e: | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"[Agent error: {e}]" | |
}) | |
if not answers: | |
return "Agent did not produce answers.", pd.DataFrame(results_log) | |
agent_code_url = f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main" | |
submission_payload = { | |
"username": username, | |
"agent_code": agent_code_url, | |
"answers": answers | |
} | |
try: | |
submit_response = requests.post(submit_url, json=submission_payload, timeout=60) | |
submit_response.raise_for_status() | |
result = submit_response.json() | |
final_status = ( | |
f"Submission Success!\n" | |
f"User: {result.get('username')}\n" | |
f"Score: {result.get('score', 'N/A')}%\n" | |
f"Correct: {result.get('correct_count', '?')}/{result.get('total_attempted', '?')}\n" | |
f"Message: {result.get('message', 'No message')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission error: {e}", pd.DataFrame(results_log) | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA Benchmark - Tool Enhanced Agent") | |
gr.Markdown( | |
""" | |
1. Login with your Hugging Face account. | |
2. Click 'Run Evaluation & Submit All Answers' to run the agent on GAIA tasks. | |
3. View your results and submission status. | |
""" | |
) | |
login_button = gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_box = gr.Textbox(label="Status / Submission Result", lines=7) | |
results_table = gr.DataFrame(label="Questions and Agent Answers") | |
run_button.click( | |
fn=run_and_submit_all, | |
inputs=login_button, | |
outputs=[status_box, results_table] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |