from fastapi import FastAPI, Form, HTTPException, BackgroundTasks, APIRouter from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from pydantic import BaseModel, Field from uuid import UUID, uuid4 import numpy as np import os import yaml from datetime import datetime, timedelta import json from pathlib import Path from typing import Dict, List, Optional, Any from contextlib import asynccontextmanager import asyncio from concurrent.futures import ThreadPoolExecutor import aiofiles from functools import lru_cache import time import re import psycopg2 from psycopg2.extras import RealDictCursor import bcrypt from dotenv import load_dotenv # for PDF generation from typing import Dict, List, Optional, Any, Union from fastapi.responses import StreamingResponse from reportlab.lib import colors from reportlab.lib.pagesizes import letter, A4 from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak, Image from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.lib.enums import TA_CENTER, TA_LEFT from io import BytesIO import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') # Use non-interactive backend # Load environment variables load_dotenv() # Download required NLTK data import nltk try: nltk.data.find('tokenizers/punkt_tab') except LookupError: nltk.download('punkt_tab') nltk.download('punkt') nltk.download('stopwords') # Create thread pool for blocking operations executor = ThreadPoolExecutor(max_workers=4) # Cache for insights data insights_cache = { "data": None, "timestamp": None, "ttl": 60 # Cache for 60 seconds } user_insights_cache = {} # Cache per user # Create data storage directories DATA_DIR = Path("survey_data") CHAT_SESSIONS_DIR = Path("chat_sessions") DATA_DIR.mkdir(exist_ok=True, parents=True) CHAT_SESSIONS_DIR.mkdir(exist_ok=True, parents=True) # Global sentiment analyzer instance sentiment_analyzer = None # Initialize shared components at startup @asynccontextmanager async def lifespan(app: FastAPI): # Startup print("🚀 Starting FastAPI server...") try: # Import here to avoid circular imports (with fallback for missing dependencies) try: from Chat_sentiment_analysis import ChatSentimentAnalyzer sentiment_analyzer_available = True except ImportError as e: print(f"⚠️ Sentiment analyzer unavailable: {e}") sentiment_analyzer_available = False try: from agents.shared_rag import shared_rag_instance rag_available = True except ImportError as e: print(f"⚠️ RAG agent unavailable: {e}") rag_available = False # Initialize sentiment analyzer in background global sentiment_analyzer if sentiment_analyzer_available: print("🧠 Loading sentiment analyzer model...") sentiment_analyzer = ChatSentimentAnalyzer() print("✅ Sentiment analyzer ready") else: sentiment_analyzer = None print("⚠️ Using basic sentiment analysis") # Get the shared RAG instance (this handles all initialization) if rag_available: print("📚 Getting shared RAG instance...") rag = shared_rag_instance.get_rag() print("✅ Shared RAG instance ready") # Store in app state app.state.rag = rag app.state.config = shared_rag_instance.config else: print("⚠️ Using basic response generation") app.state.rag = None app.state.config = None # Initialize response cache print("🗄️ Initializing response cache...") app.state.response_cache = {} app.state.cache_timestamps = {} print("🎉 FastAPI startup complete!") except Exception as e: print(f"❌ Critical error during startup: {e}") import traceback traceback.print_exc() # Create minimal fallback system app.state.rag = None app.state.response_cache = {} app.state.cache_timestamps = {} print("⚠️ Running with minimal fallback system") yield # Shutdown print("🛑 Shutting down...") if hasattr(app.state, 'executor'): app.state.executor.shutdown(wait=True) executor.shutdown(wait=True) app = FastAPI(lifespan=lifespan) # Allow CORS for local testing allowed_origins = os.getenv('ALLOWED_ORIGINS', 'http://localhost:5000,http://127.0.0.1:5000').split(',') app.add_middleware( CORSMiddleware, allow_origins=allowed_origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Health check endpoint @app.get("/health") async def health_check(): """Health check endpoint for monitoring""" return { "status": "healthy", "timestamp": datetime.now().isoformat(), "service": "mental-health-fastapi", "version": "1.0.0" } @app.get("/fastapi-health") async def fastapi_health(): """FastAPI health check endpoint""" try: return { "status": "healthy", "service": "Mental Health Chatbot FastAPI Backend", "timestamp": datetime.utcnow().isoformat(), "rag_available": hasattr(app.state, 'rag') and app.state.rag is not None, "version": "1.0.0" } except Exception as e: return { "status": "unhealthy", "error": str(e), "service": "Mental Health Chatbot FastAPI Backend", "timestamp": datetime.utcnow().isoformat() } @app.get("/") async def root(): """Root endpoint""" return {"message": "Mental Health FastAPI Service", "status": "running"} # Pydantic models class ConversationSaveRequest(BaseModel): id: Optional[UUID] = None user_id: str message: str response: str timestamp: Optional[datetime] = None class ChatMessage(BaseModel): role: str content: str timestamp: datetime class ConversationLoadResponse(BaseModel): messages: List[ChatMessage] class UserProfileCreate(BaseModel): name: str = Field(..., min_length=1) age: Optional[int] = Field(None, gt=0, le=150) gender: Optional[str] city_region: Optional[str] profession: Optional[str] marital_status: Optional[str] previous_mental_diagnosis: Optional[str] = "NA" ethnicity: Optional[str] email: str # Changed from EmailStr to str to avoid email-validator dependency password: str class LoginRequest(BaseModel): email: str # Changed from EmailStr to str password: str class UserResponse(BaseModel): id: UUID name: str age: Optional[int] gender: Optional[str] city_region: Optional[str] profession: Optional[str] marital_status: Optional[str] previous_mental_diagnosis: Optional[str] ethnicity: Optional[str] email: str # Changed from EmailStr to str class Config: from_attributes = True class MessageRequest(BaseModel): message: str user_context: Dict[str, Any] = {} session_id: Optional[str] = None class MessageResponse(BaseModel): response: str agent: str confidence: float method: str timestamp: str sources: Optional[List[Union[str, Dict[str, Any]]]] = [] # ✅ Allow both strings and dicts condition: Optional[str] = "general" is_crisis: Optional[bool] = False sources_used: Optional[int] = 0 class ChatMessageRequest(BaseModel): message: str user_context: Dict[str, Any] session_id: Optional[str] = None class ChatSessionData(BaseModel): session_id: str user_name: str messages: List[Dict] metadata: Optional[Dict] = None # Database utility functions (keep existing ones) def get_db_connection(): db_uri = os.getenv("SUPABASE_DB_URI") or os.getenv("DATABASE_URL") if not db_uri: db_uri = ( f"postgresql://{os.getenv('DATABASE_USER')}:{os.getenv('DATABASE_PASSWORD')}" f"@{os.getenv('DATABASE_HOST')}:{os.getenv('DATABASE_PORT')}/{os.getenv('DATABASE_NAME')}" ) return psycopg2.connect(db_uri) def save_conversation_util(id: UUID, user_id: str, message: str, response: str, timestamp: Optional[datetime] = None) -> bool: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() if not timestamp: timestamp = datetime.now() insert_query = """ INSERT INTO conversation_history (id, user_id, message, response, timestamp) VALUES (%s, %s, %s, %s, %s) """ cursor.execute(insert_query, (str(id), user_id, message, response, timestamp)) conn.commit() return True except psycopg2.Error as e: print(f"[DB ERROR] {e}") return False finally: if cursor: cursor.close() if conn: conn.close() def load_conversation_util(user_id: str) -> List[Dict]: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() select_query = """ SELECT message, response, timestamp FROM conversation_history WHERE user_id = %s ORDER BY timestamp ASC """ cursor.execute(select_query, (user_id,)) rows = cursor.fetchall() history = [] for message, response, timestamp in rows: history.append({ "role": "user", "content": message, "timestamp": timestamp }) history.append({ "role": "assistant", "content": response, "timestamp": timestamp }) return history except psycopg2.Error as e: print(f"[DB ERROR] Exception: {e}") return [] finally: if cursor: cursor.close() if conn: conn.close() def delete_conversations_by_user_util(user_id: str) -> bool: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() cursor.execute("DELETE FROM conversation_history WHERE user_id = %s", (user_id,)) conn.commit() return True except Exception as e: print(f"Error deleting user chats: {e}") return False finally: if cursor: cursor.close() if conn: conn.close() def register_user_util(user_data: dict) -> Optional[dict]: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() # Check if user already exists cursor.execute("SELECT id FROM user_profiles WHERE email = %s", (user_data['email'],)) if cursor.fetchone(): return None # Hash password password_hash = bcrypt.hashpw(user_data['password'].encode('utf-8'), bcrypt.gensalt()).decode('utf-8') # Insert new user user_id = uuid4() insert_query = """ INSERT INTO user_profiles (id, name, age, gender, city_region, profession, marital_status, previous_mental_diagnosis, ethnicity, email, password_hash) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING * """ cursor.execute(insert_query, ( str(user_id), user_data['name'], user_data.get('age'), user_data.get('gender'), user_data.get('city_region'), user_data.get('profession'), user_data.get('marital_status'), user_data.get('previous_mental_diagnosis', 'NA'), user_data.get('ethnicity'), user_data['email'], password_hash )) user_row = cursor.fetchone() conn.commit() if user_row: return { 'id': user_row[0], 'name': user_row[1], 'age': user_row[2], 'gender': user_row[3], 'city_region': user_row[4], 'profession': user_row[5], 'marital_status': user_row[6], 'previous_mental_diagnosis': user_row[7], 'ethnicity': user_row[8], 'email': user_row[10] } return None except Exception as e: print(f"Error registering user: {e}") return None finally: if cursor: cursor.close() if conn: conn.close() def login_user_util(email: str, password: str) -> Optional[dict]: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() cursor.execute("SELECT * FROM user_profiles WHERE email = %s", (email,)) user_row = cursor.fetchone() if user_row and bcrypt.checkpw(password.encode('utf-8'), user_row[11].encode('utf-8')): return { 'id': user_row[0], 'name': user_row[1], 'age': user_row[2], 'gender': user_row[3], 'city_region': user_row[4], 'profession': user_row[5], 'marital_status': user_row[6], 'previous_mental_diagnosis': user_row[7], 'ethnicity': user_row[8], 'email': user_row[10] } return None except Exception as e: print(f"Error logging in user: {e}") return None finally: if cursor: cursor.close() if conn: conn.close() def delete_user_util(user_id: str) -> bool: conn = cursor = None try: conn = get_db_connection() cursor = conn.cursor() # Delete conversations first (foreign key constraint) cursor.execute("DELETE FROM conversation_history WHERE user_id = %s", (user_id,)) # Delete user cursor.execute("DELETE FROM user_profiles WHERE id = %s", (user_id,)) conn.commit() return True except Exception as e: print(f"Error deleting user: {e}") return False finally: if cursor: cursor.close() if conn: conn.close() # Create API router router = APIRouter(prefix="/api/v1", tags=["database"]) def create_tables(): try: db_uri = os.getenv("SUPABASE_DB_URI") or os.getenv("DATABASE_URL") print(f"Creating tables using URI: {db_uri[:50]}...") conn = psycopg2.connect(db_uri, cursor_factory=RealDictCursor) cursor = conn.cursor() # Check if user_profiles table exists and needs to be updated cursor.execute(""" SELECT column_name FROM information_schema.columns WHERE table_name = 'user_profiles' AND column_name IN ('email', 'password_hash') """) existing_columns = [row[0] for row in cursor.fetchall()] # Add missing columns if needed if 'email' not in existing_columns: print("Adding email column to user_profiles table...") cursor.execute("ALTER TABLE user_profiles ADD COLUMN IF NOT EXISTS email VARCHAR(120) UNIQUE;") if 'password_hash' not in existing_columns: print("Adding password_hash column to user_profiles table...") cursor.execute("ALTER TABLE user_profiles ADD COLUMN IF NOT EXISTS password_hash VARCHAR(255);") # Create user_profiles table if it doesn't exist print("Creating user_profiles table if not exists...") cursor.execute(""" CREATE TABLE IF NOT EXISTS user_profiles ( id UUID PRIMARY KEY DEFAULT gen_random_uuid(), name VARCHAR(100) NOT NULL, age INTEGER CHECK (age > 0 AND age <= 150), gender VARCHAR(20), city_region VARCHAR(100), profession VARCHAR(100), marital_status VARCHAR(30), previous_mental_diagnosis TEXT DEFAULT 'NA', ethnicity VARCHAR(50), email VARCHAR(120) UNIQUE, password_hash VARCHAR(255), email_id TEXT, user_password TEXT, created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(), updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW() ); """) # Create conversation_history table print("Creating conversation_history table...") cursor.execute(""" CREATE TABLE IF NOT EXISTS conversation_history ( id UUID PRIMARY KEY DEFAULT gen_random_uuid(), user_id UUID REFERENCES user_profiles(id) ON DELETE CASCADE NOT NULL, message TEXT NOT NULL, response TEXT NOT NULL, timestamp TIMESTAMP WITH TIME ZONE DEFAULT NOW() ); """) # Create indexes safely print("Creating indexes...") cursor.execute("CREATE INDEX IF NOT EXISTS idx_conversation_user_id ON conversation_history(user_id);") cursor.execute("CREATE INDEX IF NOT EXISTS idx_conversation_timestamp ON conversation_history(timestamp);") # Try to create email index try: cursor.execute("CREATE INDEX IF NOT EXISTS idx_user_email ON user_profiles(email);") except: try: cursor.execute("CREATE INDEX IF NOT EXISTS idx_user_email_id ON user_profiles(email_id);") except: print("Could not create email index") conn.commit() print("✅ Database tables created/updated successfully!") cursor.close() conn.close() except Exception as e: print(f"❌ Error creating tables: {e}") @app.get("/api/v1/setup-db") async def setup_database(): """Setup database tables and verify connection""" try: create_tables() return { "status": "success", "message": "Database tables created/verified successfully", "tables": ["user_profiles", "conversation_history"] } except Exception as e: return { "status": "error", "message": f"Database setup failed: {str(e)}" } @router.post("/chat/save") async def save_conversation_endpoint(data: ConversationSaveRequest): conversation_id = data.id or uuid4() success = save_conversation_util( id=conversation_id, user_id=data.user_id, message=data.message, response=data.response, timestamp=data.timestamp ) if not success: raise HTTPException(status_code=500, detail="Failed to save conversation") return {"status": "success", "conversation_id": str(conversation_id)} @router.get("/chat/load/{user_id}", response_model=ConversationLoadResponse) async def load_conversation_endpoint(user_id: str): messages = load_conversation_util(user_id) if not messages: return {"messages": []} return {"messages": [ChatMessage(**msg) for msg in messages]} @router.delete("/chat/delete-all/{user_id}") async def delete_all_conversations(user_id: str): success = delete_conversations_by_user_util(user_id) if not success: raise HTTPException(status_code=500, detail="Failed to delete user conversations") return {"status": "all deleted"} @router.post("/login", response_model=UserResponse) def login_user_endpoint(data: LoginRequest): user = login_user_util(data.email, data.password) if not user: raise HTTPException(status_code=401, detail="Invalid credentials") return user @router.post("/register", response_model=UserResponse) def register_user_endpoint(data: UserProfileCreate): user = register_user_util(data.dict()) if not user: raise HTTPException(status_code=400, detail="Registration failed - user may already exist") return user # Add this route after your existing API routes: @router.delete("/delete/{user_id}") def delete_user_and_data(user_id: str): """Completely delete a user and all associated data""" try: print(f"🗑️ FastAPI: Deleting user {user_id} and all data...") # Delete conversation history conversations_deleted = delete_conversations_by_user_util(user_id) # Delete user profile user_deleted = delete_user_util(user_id) if user_deleted: print(f"✅ FastAPI: Successfully deleted user {user_id}") return { "status": "success", "message": f"User {user_id} and all associated data deleted", "conversations_deleted": conversations_deleted } else: print(f"❌ FastAPI: Failed to delete user {user_id}") raise HTTPException(status_code=500, detail="Failed to delete user") except Exception as e: print(f"❌ FastAPI deletion error: {e}") raise HTTPException(status_code=500, detail=f"Deletion failed: {str(e)}") # ============================================================================== # SINGLE UNIFIED CHAT ENDPOINT - USING SHARED RAG ONLY # ============================================================================== @app.post("/process_message", response_model=MessageResponse) async def process_message(request: MessageRequest): """ Unified chat processing endpoint using shared RAG system. This handles all chat requests - fast, full, and CrewAI modes. """ start_time = time.time() try: print(f"💬 Processing message: {request.message[:50]}...") print(f"👤 User context: {request.user_context}") # Check if RAG system is available if not hasattr(app.state, 'rag') or app.state.rag is None: print("⚠️ RAG system not available, using fallback") return _generate_fallback_response(request, "system_unavailable") rag = app.state.rag # Try CrewAI integration first if available if hasattr(rag, 'process_query_with_crewai') and rag.crewai_enabled: print("🤖 Using CrewAI enhanced processing...") try: result = await asyncio.get_event_loop().run_in_executor( executor, rag.process_query_with_crewai, request.message, request.user_context ) processing_time = time.time() - start_time print(f"✅ CrewAI response generated in {processing_time:.2f}s") return MessageResponse( response=result.get("response", "I'm here to help you."), agent=result.get("agent", "CrewAI Enhanced System"), confidence=result.get("confidence", 0.85), method="crewai_integrated", timestamp=datetime.now().isoformat(), sources=result.get("sources", [])[:3], # Limit sources condition=result.get("condition", "general"), is_crisis=result.get("is_crisis", False), sources_used=len(result.get("sources", [])) ) except Exception as crewai_error: print(f"⚠️ CrewAI processing failed: {crewai_error}") # Continue to regular RAG processing # ✅ FIX: Move this block to the correct indentation level print("📚 Using RAG processing...") try: result = await asyncio.get_event_loop().run_in_executor( executor, rag.process_query, request.message, request.user_context.get('emotion', 'neutral'), request.user_context.get('mental_health_status', 'Unknown'), request.user_context ) processing_time = time.time() - start_time print(f"✅ RAG response generated in {processing_time:.2f}s") print(f"📊 Confidence: {result.get('confidence', 0.0):.2f}") # ✅ FIX: Process sources properly raw_sources = result.get("sources", []) processed_sources = [] for source in raw_sources[:3]: # Limit to 3 sources if isinstance(source, dict): # Extract just the source filename or create a simple string source_text = source.get('source', 'Unknown source') if 'knowledge/' in source_text: source_text = source_text.split('knowledge/')[-1] # Get just filename processed_sources.append(source_text) elif isinstance(source, str): processed_sources.append(source) else: processed_sources.append(str(source)) return MessageResponse( response=result.get("response", "I'm here to help you with your mental health concerns."), agent="Mental Health RAG Assistant", confidence=result.get("confidence", 0.7), method="rag_standard", timestamp=datetime.now().isoformat(), sources=processed_sources, # ✅ Now properly formatted condition="general", is_crisis=False, sources_used=len(raw_sources) ) except Exception as rag_error: print(f"❌ RAG processing failed: {rag_error}") return _generate_fallback_response(request, "rag_error") except Exception as e: print(f"❌ Critical error in process_message: {e}") import traceback traceback.print_exc() return _generate_fallback_response(request, "critical_error") def _generate_fallback_response(request: MessageRequest, error_type: str) -> MessageResponse: """Generate intelligent fallback response based on message content""" try: message_lower = request.message.lower() user_name = request.user_context.get('name', 'there') # Crisis detection crisis_keywords = ['suicide', 'kill myself', 'want to die', 'hurt myself', 'end it all'] if any(keyword in message_lower for keyword in crisis_keywords): response = f"🆘 I'm very concerned about what you've shared, {user_name}. Please reach out for immediate help. In Bhutan: Emergency Services (112), National Mental Health Program (1717). Your life has value and help is available." condition = 'crisis' is_crisis = True # Emotional categories elif any(word in message_lower for word in ['sad', 'depressed', 'depression', 'down', 'hopeless']): response = f"I understand you're feeling sad, {user_name}. These feelings are valid and you're not alone. Depression can feel overwhelming, but there are effective ways to manage it. Would you like to explore some coping strategies?" condition = 'depression' is_crisis = False elif any(word in message_lower for word in ['anxious', 'anxiety', 'worried', 'panic', 'nervous']): response = f"I hear that you're experiencing anxiety, {user_name}. These feelings can be very challenging, but there are proven techniques that can help. Would you like to try some breathing exercises?" condition = 'anxiety' is_crisis = False elif any(word in message_lower for word in ['angry', 'frustrated', 'mad', 'rage']): response = f"I understand you're feeling angry or frustrated, {user_name}. Anger is a normal emotion, and learning healthy ways to express it is important for your wellbeing. What's been contributing to these feelings?" condition = 'anger' is_crisis = False elif any(word in message_lower for word in ['lonely', 'alone', 'isolated']): response = f"I hear that you're feeling lonely, {user_name}. Loneliness can be very difficult to experience. You're reaching out here, which shows strength. Would you like to talk about ways to connect with others?" condition = 'loneliness' is_crisis = False else: response = f"Thank you for sharing with me, {user_name}. I'm here to support you with your mental health concerns. While I'm experiencing some technical difficulties, I want you to know that your feelings matter and help is available." condition = 'general' is_crisis = False # Add technical note for non-crisis situations if not is_crisis: if error_type == "system_unavailable": response += "\n\nI'm currently running in limited mode, but I'm still here to listen and provide support." elif error_type == "rag_error": response += "\n\nI'm having some difficulty accessing my knowledge base, but I can still offer emotional support and general guidance." return MessageResponse( response=response, agent="Mental Health Support Assistant", confidence=0.7, method=f"intelligent_fallback_{error_type}", timestamp=datetime.now().isoformat(), sources=[], condition=condition, is_crisis=is_crisis, sources_used=0 ) except Exception as e: print(f"Error generating fallback response: {e}") return MessageResponse( response="I'm experiencing technical difficulties, but I want you to know that I'm here to support you. For immediate mental health support in Bhutan, please contact the National Mental Health Program at 1717 (24/7).", agent="Emergency Support", confidence=0.5, method="emergency_fallback", timestamp=datetime.now().isoformat(), sources=[], condition="emergency", is_crisis=False, sources_used=0 ) # Legacy endpoints for backward compatibility @app.post("/process_message_fast", response_model=MessageResponse) async def process_message_fast(request: MessageRequest): """Legacy fast endpoint - redirects to main processor""" print("📍 Legacy fast endpoint called, redirecting to main processor...") return await process_message(request) @app.post("/process_message_with_crew", response_model=MessageResponse) async def process_message_with_crew(request: MessageRequest): """Legacy CrewAI endpoint - redirects to main processor""" print("📍 Legacy CrewAI endpoint called, redirecting to main processor...") return await process_message(request) # ============================================================================== # UTILITY AND DEBUGGING ENDPOINTS # ============================================================================== @app.get("/debug_systems") async def debug_systems(): """Debug endpoint to check system status""" try: status = { "timestamp": datetime.now().isoformat(), "rag_available": hasattr(app.state, 'rag') and app.state.rag is not None, "sentiment_analyzer_available": sentiment_analyzer is not None } if hasattr(app.state, 'rag') and app.state.rag is not None: rag = app.state.rag status.update({ "rag_type": str(type(rag)), "crewai_enabled": getattr(rag, 'crewai_enabled', False), "rag_methods": [method for method in dir(rag) if not method.startswith('_')] }) # Test knowledge base try: collection_info = rag.retriever.get_collection_info() status["knowledge_status"] = { "documents_count": collection_info.get('points_count', 0), "collection_name": collection_info.get('name', 'unknown') } except Exception as e: status["knowledge_status"] = {"error": str(e)} return status except Exception as e: return {"error": str(e), "timestamp": datetime.now().isoformat()} @app.get("/reingest_knowledge") async def reingest_knowledge(): """Force reingest knowledge base""" try: if not hasattr(app.state, 'rag') or app.state.rag is None: return {"error": "RAG system not available"} print("🔄 Force reingesting knowledge...") result = await asyncio.get_event_loop().run_in_executor( executor, app.state.rag.ingest_knowledge_folder, "knowledge" ) return { "status": "success", "message": "Knowledge reingestion completed", "result": result, "timestamp": datetime.now().isoformat() } except Exception as e: return { "status": "error", "message": str(e), "timestamp": datetime.now().isoformat() } # ============================================================================== # KEEP EXISTING SURVEY AND SESSION ENDPOINTS # ============================================================================== def sanitize_filename(name: str) -> str: """Sanitize user name for use in filename""" sanitized = re.sub(r'[^\w\s-]', '', name) sanitized = re.sub(r'[-\s]+', '_', sanitized) return sanitized @app.post("/save_chat_session") async def save_chat_session(session_data: ChatSessionData): """Save chat session to disk""" # Don't save chat sessions for guest users (case-insensitive) if session_data.user_name.lower() in ['guest', 'guest user', '']: return {"status": "success", "message": "Guest chat sessions are not saved"} try: filename = f"chat_{session_data.user_name}_{session_data.session_id}.json" filepath = CHAT_SESSIONS_DIR / filename async with aiofiles.open(filepath, 'w') as f: await f.write(json.dumps(session_data.dict(), indent=2)) return {"status": "success", "message": "Chat session saved"} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/get_chat_session/{session_id}") async def get_chat_session(session_id: str): """Retrieve chat session by ID""" try: # Check if the session file exists filename = f"chat_*_{session_id}.json" filepath = CHAT_SESSIONS_DIR / filename if not filepath.exists(): raise HTTPException(status_code=404, detail="Chat session not found") async with aiofiles.open(filepath, 'r') as f: session_data = await f.read() return {"status": "success", "data": json.loads(session_data)} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Keep the professional assessment and other existing endpoints... # (Professional assessment code remains the same as it's working) # Professional assessment models and functions class ProfessionalAssessmentRequest(BaseModel): """Request model for professional questionnaire assessment""" Name: str Age: int Sex: str Location: str days_indoors: int Emotion: str history_of_mental_illness: str treatment: str # PHQ-9 Depression Screening (0-3 scale) PHQ9_1: int PHQ9_2: int PHQ9_3: int PHQ9_4: int PHQ9_5: int PHQ9_6: int PHQ9_7: int PHQ9_8: int PHQ9_9: int # GAD-7 Anxiety Screening (0-3 scale) GAD7_1: int GAD7_2: int GAD7_3: int GAD7_4: int GAD7_5: int GAD7_6: int GAD7_7: int # DAST-10 Substance Use (Yes/No -> 1/0) DAST_1: str DAST_2: str DAST_3: str DAST_4: str DAST_5: str DAST_6: str DAST_7: str DAST_8: str DAST_9: str DAST_10: str # AUDIT Alcohol Use (string responses) AUDIT_1: str AUDIT_2: str AUDIT_3: str AUDIT_4: str AUDIT_5: str AUDIT_6: str AUDIT_7: str AUDIT_8: str AUDIT_9: str AUDIT_10: str # Bipolar Screening (Yes/No -> 1/0) BIPOLAR_1: str BIPOLAR_2: str BIPOLAR_3: str BIPOLAR_4: str BIPOLAR_5: str BIPOLAR_6: str BIPOLAR_7: str BIPOLAR_8: str BIPOLAR_9: str BIPOLAR_10: str BIPOLAR_11: str class SurveyData(BaseModel): timestamp: str name: str age: int sex: str location: str emotion: str prediction: str score: float averages: Dict[str, float] raw_responses: Dict[str, List[float]] @app.post("/store_survey") async def store_survey(survey_data: SurveyData, background_tasks: BackgroundTasks): """Store survey data for insights and analytics""" # Don't store data for guest users if survey_data.name.lower() in ['guest', 'guest user', '']: return {"status": "success", "message": "Guest data not stored"} # Sanitize the name for filename safe_name = sanitize_filename(survey_data.name) filename = f"survey_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{safe_name}.json" filepath = DATA_DIR / filename # Write asynchronously async with aiofiles.open(filepath, 'w') as f: await f.write(json.dumps(survey_data.dict(), indent=2)) return {"status": "success", "message": "Survey data stored successfully"} @app.post("/predict_professional") def predict_professional(data: ProfessionalAssessmentRequest): """Professional mental health assessment using validated questionnaires""" # Score PHQ-9 Depression phq9_answers = { f"Q{i}": getattr(data, f"PHQ9_{i}") for i in range(1, 10) } phq9_score = sum(phq9_answers.values()) phq9_interpretation = interpret_score("PHQ-9", phq9_score) # Score GAD-7 Anxiety gad7_answers = { f"Q{i}": getattr(data, f"GAD7_{i}") for i in range(1, 8) } gad7_score = sum(gad7_answers.values()) gad7_interpretation = interpret_score("GAD-7", gad7_score) # Score DAST-10 Substance Use dast_answers = {} for i in range(1, 11): answer = getattr(data, f"DAST_{i}") # Handle reverse scoring for DAST-3 (able to stop) if i == 3: dast_answers[f"Q{i}"] = 1 if answer.lower() == "no" else 0 else: dast_answers[f"Q{i}"] = 1 if answer.lower() == "yes" else 0 dast_score = sum(dast_answers.values()) dast_interpretation = interpret_score("DAST-10", dast_score) # Score AUDIT Alcohol Use audit_answers = {} for i in range(1, 11): audit_answers[f"Q{i}"] = getattr(data, f"AUDIT_{i}") audit_score = score_questionnaire("AUDIT", audit_answers) audit_interpretation = interpret_score("AUDIT", audit_score) # Score Bipolar Screening bipolar_answers = {} for i in range(1, 12): answer = getattr(data, f"BIPOLAR_{i}") bipolar_answers[f"Q{i}"] = 1 if answer.lower() == "yes" else 0 bipolar_score = sum(bipolar_answers.values()) bipolar_interpretation = interpret_score("Bipolar", bipolar_score) # Calculate overall risk level based on professional scores risk_factors = [] # Depression risk if phq9_score >= 15: risk_factors.append("severe_depression") elif phq9_score >= 10: risk_factors.append("moderate_depression") elif phq9_score >= 5: risk_factors.append("mild_depression") # Anxiety risk if gad7_score >= 15: risk_factors.append("severe_anxiety") elif gad7_score >= 10: risk_factors.append("moderate_anxiety") elif gad7_score >= 5: risk_factors.append("mild_anxiety") # Substance use risk if dast_score >= 6: risk_factors.append("substance_concern") # Alcohol use risk if audit_score >= 15: risk_factors.append("alcohol_concern") # Bipolar risk if bipolar_score >= 7: risk_factors.append("bipolar_concern") # Determine overall prediction if any(factor.startswith("severe") for factor in risk_factors) or len(risk_factors) >= 3: overall_prediction = "Severe" overall_score = 4.0 elif any(factor.startswith("moderate") for factor in risk_factors) or len(risk_factors) >= 2: overall_prediction = "Moderate" overall_score = 3.0 elif len(risk_factors) >= 1: overall_prediction = "Mild" overall_score = 2.0 else: overall_prediction = "Healthy" overall_score = 1.0 # Generate professional recommendations recommendations = [] if phq9_score >= 10: recommendations.append("Consider consulting a mental health professional for depression screening.") if gad7_score >= 10: recommendations.append("Consider discussing anxiety symptoms with a healthcare provider.") if dast_score >= 3: recommendations.append("Consider discussing substance use with a healthcare provider.") if audit_score >= 8: recommendations.append("Consider discussing alcohol use patterns with a healthcare provider.") if bipolar_score >= 7: recommendations.append("Consider discussing mood episodes with a mental health professional.") if not recommendations: recommendations.append("Continue maintaining good mental health practices and regular self-care.") # Emergency contact info for Bhutan emergency_info = None if phq9_score >= 15 or any(factor == "severe_depression" for factor in risk_factors): emergency_info = { "message": "If you're having thoughts of self-harm, please reach out for help immediately.", "emergency_contacts": [ "Bhutan Emergency: 112", "Jigme Dorji Wangchuck National Referral Hospital: +975-2-322496", "Thimphu Police: +975-2-322222" ] } return { "prediction": overall_prediction, "score": overall_score, "detailed_scores": { "phq9": {"score": phq9_score, "interpretation": phq9_interpretation}, "gad7": {"score": gad7_score, "interpretation": gad7_interpretation}, "dast10": {"score": dast_score, "interpretation": dast_interpretation}, "audit": {"score": audit_score, "interpretation": audit_interpretation}, "bipolar": {"score": bipolar_score, "interpretation": bipolar_interpretation} }, "risk_factors": risk_factors, "recommendations": recommendations, "emergency_info": emergency_info } # Additional utility functions for scoring (keep existing) def score_questionnaire(condition: str, answers: dict) -> int: """Score PHQ-9, GAD-7, DAST-10, Bipolar and AUDIT answers.""" score = 0 if condition in ["PHQ-9", "GAD-7"]: scale = { "0": 0, "not at all": 0, "1": 1, "several days": 1, "2": 2, "more than half the days": 2, "3": 3, "nearly every day": 3 } for ans in answers.values(): cleaned = str(ans).strip().lower() if '-' in cleaned: cleaned = cleaned.split("-", 1)[-1].strip() score += scale.get(cleaned, 0) elif condition == "DAST-10": for ans in answers.values(): score += 1 if str(ans).lower() in ["yes", "y", "true", "1"] else 0 elif condition == "AUDIT": scale_0_to_4 = { "never": 0, "monthly or less": 1, "less than monthly": 1, "2 to 4 times a month": 2, "5 or 6": 2, "monthly": 2, "2 to 3 times a week": 3, "7, 8, or 9": 3, "weekly": 3, "4 or more times a week": 4, "10 or more": 4, "daily or almost daily": 4, "1 or 2": 0, "3 or 4": 1 } scale_0_2_4 = { "no": 0, "yes, but not in the last year": 2, "yes, during the last year": 4 } # Q1 logic (skip if "never") ans1 = answers.get("Q1", "").strip().lower() skip_to_end = ans1 == "never" if skip_to_end: score += 0 # Score Q9 and Q10 only for qkey in ["Q9", "Q10"]: ans = answers.get(qkey, "").strip().lower() for key in scale_0_2_4: if key in ans: score += scale_0_2_4[key] break return score else: for key in scale_0_to_4: if key in ans1: score += scale_0_to_4[key] break # Continue with Q2–Q8 for qkey in [f"Q{i}" for i in range(2, 9)]: ans = answers.get(qkey, "").strip().lower() for key in scale_0_to_4: if key in ans: score += scale_0_to_4[key] break # Score Q9, Q10 for qkey in ["Q9", "Q10"]: ans = answers.get(qkey, "").strip().lower() for key in scale_0_2_4: if key in ans: score += scale_0_2_4[key] break elif condition == "Bipolar": for ans in answers.values(): score += 1 if str(ans).strip().lower() in ["yes", "y", "true", "1"] else 0 return score def interpret_score(condition: str, score: int) -> str: """Interpret the score based on condition.""" if condition == "PHQ-9": if score <= 4: return "Minimal depression" elif score <= 9: return "Mild depression" elif score <= 14: return "Moderate depression" elif score <= 19: return "Moderately severe depression" return "Severe depression" if condition == "GAD-7": if score <= 4: return "Minimal anxiety" elif score <= 9: return "Mild anxiety" elif score <= 14: return "Moderate anxiety" return "Severe anxiety" if condition == "DAST-10": if score == 0: return "No problems reported" elif score <= 2: return "Low level of problems" elif score <= 5: return "Moderate problems" elif score <= 8: return "Substantial problems" return "Severe problems" if condition == "AUDIT": if score <= 7: return "Lower risk, usually no action needed." elif score >= 8 and score <= 14: return "Hazardous or harmful alcohol use. Brief advice or counseling may be appropriate." elif score >= 15 and score <= 19: return "Harmful alcohol use. Brief counseling and continued monitoring recommended." elif score >= 20: return "Likely alcohol dependence. Referral for specialist assessment and treatment is recommended." else: return "Score out of typical AUDIT range." if condition == "Bipolar": if score >= 7: return "Likely signs of bipolar disorder" return "Unlikely bipolar symptoms" return "Score interpreted" if __name__ == "__main__": import uvicorn import os # Production settings debug_mode = os.getenv('DEBUG', 'False').lower() == 'true' host = os.getenv('HOST', '0.0.0.0') port = int(os.getenv('FASTAPI_PORT', 8000)) uvicorn.run( app, host=host, port=port, reload=debug_mode, log_level="info" if not debug_mode else "debug" )