harshin commited on
Commit
edb48e0
·
1 Parent(s): 3266ddc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -20
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import numpy as np
3
  from PIL import Image
@@ -33,7 +34,7 @@ st.title("Deep Prediction Hub")
33
  st.sidebar.header("Options")
34
 
35
  # Choose between tasks
36
- task = st.sidebar.radio("Select Task", ("Sentiment Classification", "Tumor Detection"))
37
 
38
  if task == "Sentiment Classification":
39
  st.subheader("Sentiment Classification")
@@ -44,7 +45,7 @@ if task == "Sentiment Classification":
44
 
45
  if new_review_text.strip():
46
  st.subheader("Choose Model for Sentiment Classification")
47
- model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM"))
48
 
49
  # Load models dynamically based on the selected option
50
  if model_option == "Perceptron":
@@ -80,21 +81,3 @@ elif task == "Tumor Detection":
80
  st.subheader("Tumor Detection Result")
81
  st.write(f"**{result}**")
82
 
83
- result = sentiment_classification(new_review_text, model)
84
- st.subheader("Sentiment Classification Result")
85
- st.write(f"**{result}**")
86
-
87
- elif task == "Tumor Detection":
88
- st.subheader("Tumor Detection")
89
- uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"])
90
-
91
- if uploaded_file is not None:
92
- # Load the tumor detection model
93
- model = load_model('CN.h5')
94
- st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200)
95
- st.write("")
96
-
97
- if st.button("Detect Tumor"):
98
- result = tumor_detection(uploaded_file, model)
99
- st.subheader("Tumor Detection Result")
100
- st.write(f"**{result}**")
 
1
+
2
  import streamlit as st
3
  import numpy as np
4
  from PIL import Image
 
34
  st.sidebar.header("Options")
35
 
36
  # Choose between tasks
37
+ task = st.sidebar.radio("Select Task", ("Sentiment Classification", "Tumor Detection"), key="task_selection")
38
 
39
  if task == "Sentiment Classification":
40
  st.subheader("Sentiment Classification")
 
45
 
46
  if new_review_text.strip():
47
  st.subheader("Choose Model for Sentiment Classification")
48
+ model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM"), key="model_selection")
49
 
50
  # Load models dynamically based on the selected option
51
  if model_option == "Perceptron":
 
81
  st.subheader("Tumor Detection Result")
82
  st.write(f"**{result}**")
83