Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import RagTokenizer,
|
3 |
|
4 |
-
# Load
|
5 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
6 |
-
|
7 |
-
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
# Tokenize the input query
|
12 |
inputs = tokenizer(query, return_tensors="pt")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
# Decode the generated answer and return it
|
21 |
-
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
22 |
return answer
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import RagTokenizer, RagTokenForGeneration
|
3 |
|
4 |
+
# Load tokenizer and model
|
5 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
6 |
+
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
|
|
|
7 |
|
8 |
+
def rag_generate(query):
|
9 |
+
# Tokenize the input question
|
|
|
10 |
inputs = tokenizer(query, return_tensors="pt")
|
11 |
|
12 |
+
# Generate output
|
13 |
+
generated_ids = model.generate(**inputs)
|
14 |
|
15 |
+
# Decode the generated response
|
16 |
+
answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
17 |
+
|
|
|
|
|
18 |
return answer
|
19 |
|
20 |
+
# Gradio Interface
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
gr.Markdown("# 🤖 RAG Token QA with facebook/rag-token-nq")
|
23 |
+
with gr.Row():
|
24 |
+
question = gr.Textbox(label="Ask your question")
|
25 |
+
with gr.Row():
|
26 |
+
answer = gr.Textbox(label="Answer")
|
27 |
+
|
28 |
+
submit_btn = gr.Button("Generate Answer")
|
29 |
+
submit_btn.click(fn=rag_generate, inputs=question, outputs=answer)
|
30 |
|
31 |
+
demo.launch()
|
|