Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdfplumber
|
2 |
+
import re
|
3 |
+
import nltk
|
4 |
+
import torch
|
5 |
+
import uvicorn
|
6 |
+
import os
|
7 |
+
import threading
|
8 |
+
import time
|
9 |
+
from nltk.tokenize import sent_tokenize
|
10 |
+
from transformers import pipeline
|
11 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
12 |
+
from fastapi.middleware.cors import CORSMiddleware
|
13 |
+
|
14 |
+
# β
Ensure NLTK dependencies
|
15 |
+
try:
|
16 |
+
nltk.data.find('tokenizers/punkt')
|
17 |
+
except LookupError:
|
18 |
+
nltk.download('punkt')
|
19 |
+
|
20 |
+
# β
Initialize FastAPI App
|
21 |
+
app = FastAPI()
|
22 |
+
|
23 |
+
# β
Enable CORS for API Accessibility
|
24 |
+
app.add_middleware(
|
25 |
+
CORSMiddleware,
|
26 |
+
allow_origins=["*"],
|
27 |
+
allow_credentials=True,
|
28 |
+
allow_methods=["*"],
|
29 |
+
allow_headers=["*"],
|
30 |
+
)
|
31 |
+
|
32 |
+
# β
Automatically Detect Device (Use GPU if Available)
|
33 |
+
device = 0 if torch.cuda.is_available() else -1
|
34 |
+
print(f"Using Device: {'GPU' if device == 0 else 'CPU'}")
|
35 |
+
|
36 |
+
# β
Load Summarization Model
|
37 |
+
summarizer = pipeline("summarization", model="google/pegasus-xsum", device=device)
|
38 |
+
|
39 |
+
# --- **Generalized Cleaning** ---
|
40 |
+
def clean_text(text):
|
41 |
+
text = re.sub(r"\[\d+\]|\(\d+\)|\(\d{4}\)", "", text)
|
42 |
+
text = re.sub(r"(References:.*$)", "", text, flags=re.IGNORECASE)
|
43 |
+
text = re.sub(r"https?://\S+|www\.\S+", "", text)
|
44 |
+
text = re.sub(r"\s+", " ", text).strip()
|
45 |
+
return text
|
46 |
+
|
47 |
+
# --- **PDF Text Extraction** ---
|
48 |
+
def extract_text_from_pdf(pdf_path):
|
49 |
+
with pdfplumber.open(pdf_path) as pdf:
|
50 |
+
extracted_text = [page.extract_text() for page in pdf.pages if page.extract_text()]
|
51 |
+
return "\n".join(extracted_text)
|
52 |
+
|
53 |
+
# --- **Chunking for Summarization** ---
|
54 |
+
def split_text(text, chunk_size=2048):
|
55 |
+
sentences = sent_tokenize(text)
|
56 |
+
chunks, current_chunk = [], ""
|
57 |
+
for sentence in sentences:
|
58 |
+
if len(current_chunk) + len(sentence) + 1 <= chunk_size:
|
59 |
+
current_chunk += sentence + " "
|
60 |
+
else:
|
61 |
+
chunks.append(current_chunk.strip())
|
62 |
+
current_chunk = sentence + " "
|
63 |
+
if current_chunk:
|
64 |
+
chunks.append(current_chunk.strip())
|
65 |
+
return chunks
|
66 |
+
|
67 |
+
# --- **Summarization Endpoint** ---
|
68 |
+
@app.post("/summarize-pdf/")
|
69 |
+
async def summarize_pdf(file: UploadFile = File(...)):
|
70 |
+
try:
|
71 |
+
start_time = time.time()
|
72 |
+
pdf_content = await file.read()
|
73 |
+
pdf_path = "temp.pdf"
|
74 |
+
with open(pdf_path, "wb") as f:
|
75 |
+
f.write(pdf_content)
|
76 |
+
|
77 |
+
full_text = extract_text_from_pdf(pdf_path)
|
78 |
+
if not full_text.strip():
|
79 |
+
return {"error": "No text extracted from the PDF."}
|
80 |
+
|
81 |
+
cleaned_text = clean_text(full_text)
|
82 |
+
text_chunks = split_text(cleaned_text, chunk_size=2048)
|
83 |
+
summaries = [summarizer(chunk, max_new_tokens=250, num_beams=5, truncation=True)[0]['summary_text'] for chunk in text_chunks]
|
84 |
+
|
85 |
+
final_summary = " ".join(summaries)
|
86 |
+
return {"summary": final_summary}
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
return {"error": str(e)}
|
90 |
+
|
91 |
+
# β
Run FastAPI Server (Only for Local Debugging)
|
92 |
+
if __name__ == "__main__":
|
93 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|