Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,4 +1,13 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pdfplumber
|
3 |
import re
|
4 |
import nltk
|
@@ -7,29 +16,30 @@ import uvicorn
|
|
7 |
import time
|
8 |
from nltk.tokenize import sent_tokenize
|
9 |
from transformers import pipeline
|
10 |
-
from fastapi import FastAPI, File, UploadFile
|
11 |
from fastapi.middleware.cors import CORSMiddleware
|
12 |
|
13 |
-
#
|
14 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
15 |
-
os.environ["HF_HOME"] = "/tmp/hf_home"
|
16 |
-
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"
|
17 |
-
|
18 |
-
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
|
19 |
-
os.makedirs("/tmp/hf_home", exist_ok=True)
|
20 |
-
|
21 |
-
# β
Ensure NLTK Dependencies are Stored in a Writable Directory
|
22 |
NLTK_DATA_DIR = "/tmp/nltk_data"
|
23 |
os.makedirs(NLTK_DATA_DIR, exist_ok=True)
|
24 |
nltk.data.path.append(NLTK_DATA_DIR)
|
25 |
|
26 |
-
#
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
#
|
30 |
app = FastAPI()
|
31 |
|
32 |
-
#
|
33 |
app.add_middleware(
|
34 |
CORSMiddleware,
|
35 |
allow_origins=["*"],
|
@@ -38,11 +48,11 @@ app.add_middleware(
|
|
38 |
allow_headers=["*"],
|
39 |
)
|
40 |
|
41 |
-
#
|
42 |
device = 0 if torch.cuda.is_available() else -1
|
43 |
print(f"Using Device: {'GPU' if device == 0 else 'CPU'}")
|
44 |
|
45 |
-
#
|
46 |
summarizer = pipeline("summarization", model="google/pegasus-xsum", device=device)
|
47 |
|
48 |
# --- **Generalized Cleaning** ---
|
@@ -73,13 +83,13 @@ def split_text(text, chunk_size=2048):
|
|
73 |
chunks.append(current_chunk.strip())
|
74 |
return chunks
|
75 |
|
76 |
-
#
|
77 |
@app.post("/summarize-pdf/")
|
78 |
async def summarize_pdf(file: UploadFile = File(...)):
|
79 |
try:
|
80 |
start_time = time.time()
|
81 |
pdf_content = await file.read()
|
82 |
-
pdf_path = "/tmp/temp.pdf" #
|
83 |
with open(pdf_path, "wb") as f:
|
84 |
f.write(pdf_content)
|
85 |
|
@@ -97,6 +107,5 @@ async def summarize_pdf(file: UploadFile = File(...)):
|
|
97 |
except Exception as e:
|
98 |
return {"error": str(e)}
|
99 |
|
100 |
-
# β
Start Uvicorn for Hugging Face Spaces
|
101 |
if __name__ == "__main__":
|
102 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
+
|
3 |
+
# Set cache directories to writable locations
|
4 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
5 |
+
os.environ["HF_HOME"] = "/tmp/hf_home"
|
6 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"
|
7 |
+
|
8 |
+
os.makedirs("/tmp/huggingface_cache", exist_ok=True)
|
9 |
+
os.makedirs("/tmp/hf_home", exist_ok=True)
|
10 |
+
|
11 |
import pdfplumber
|
12 |
import re
|
13 |
import nltk
|
|
|
16 |
import time
|
17 |
from nltk.tokenize import sent_tokenize
|
18 |
from transformers import pipeline
|
19 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
20 |
from fastapi.middleware.cors import CORSMiddleware
|
21 |
|
22 |
+
# Set NLTK data directory to a writable location
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
NLTK_DATA_DIR = "/tmp/nltk_data"
|
24 |
os.makedirs(NLTK_DATA_DIR, exist_ok=True)
|
25 |
nltk.data.path.append(NLTK_DATA_DIR)
|
26 |
|
27 |
+
# Download required NLTK resources
|
28 |
+
try:
|
29 |
+
nltk.data.find("tokenizers/punkt")
|
30 |
+
except LookupError:
|
31 |
+
nltk.download("punkt", download_dir=NLTK_DATA_DIR)
|
32 |
+
|
33 |
+
# Download punkt_tab as well (to fix the error)
|
34 |
+
try:
|
35 |
+
nltk.data.find("tokenizers/punkt_tab")
|
36 |
+
except LookupError:
|
37 |
+
nltk.download("punkt_tab", download_dir=NLTK_DATA_DIR)
|
38 |
|
39 |
+
# Initialize FastAPI App
|
40 |
app = FastAPI()
|
41 |
|
42 |
+
# Enable CORS for API Accessibility
|
43 |
app.add_middleware(
|
44 |
CORSMiddleware,
|
45 |
allow_origins=["*"],
|
|
|
48 |
allow_headers=["*"],
|
49 |
)
|
50 |
|
51 |
+
# Automatically Detect Device (Use GPU if Available)
|
52 |
device = 0 if torch.cuda.is_available() else -1
|
53 |
print(f"Using Device: {'GPU' if device == 0 else 'CPU'}")
|
54 |
|
55 |
+
# Load Summarization Model
|
56 |
summarizer = pipeline("summarization", model="google/pegasus-xsum", device=device)
|
57 |
|
58 |
# --- **Generalized Cleaning** ---
|
|
|
83 |
chunks.append(current_chunk.strip())
|
84 |
return chunks
|
85 |
|
86 |
+
# --- **Summarization Endpoint** ---
|
87 |
@app.post("/summarize-pdf/")
|
88 |
async def summarize_pdf(file: UploadFile = File(...)):
|
89 |
try:
|
90 |
start_time = time.time()
|
91 |
pdf_content = await file.read()
|
92 |
+
pdf_path = "/tmp/temp.pdf" # Store in /tmp/
|
93 |
with open(pdf_path, "wb") as f:
|
94 |
f.write(pdf_content)
|
95 |
|
|
|
107 |
except Exception as e:
|
108 |
return {"error": str(e)}
|
109 |
|
|
|
110 |
if __name__ == "__main__":
|
111 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|