Spaces:
Build error
Build error
# This script is modified from https://github.com/EricGuo5513/TM2T | |
# Licensed under: https://github.com/EricGuo5513/TM2T/blob/main/LICENSE | |
import torch.nn as nn | |
class VQDecoderV3(nn.Module): | |
def __init__(self, args): | |
super(VQDecoderV3, self).__init__() | |
n_up = args.vae_layer | |
channels = [] | |
for i in range(n_up - 1): | |
channels.append(args.vae_length) | |
channels.append(args.vae_length) | |
channels.append(args.vae_test_dim) | |
input_size = args.vae_length | |
n_resblk = 2 | |
assert len(channels) == n_up + 1 | |
if input_size == channels[0]: | |
layers = [] | |
else: | |
layers = [nn.Conv1d(input_size, channels[0], kernel_size=3, stride=1, padding=1)] | |
for i in range(n_resblk): | |
layers += [ResBlock(channels[0])] | |
# channels = channels | |
for i in range(n_up): | |
layers += [ | |
nn.Upsample(scale_factor=2, mode="nearest"), | |
nn.Conv1d(channels[i], channels[i + 1], kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
] | |
layers += [nn.Conv1d(channels[-1], channels[-1], kernel_size=3, stride=1, padding=1)] | |
self.main = nn.Sequential(*layers) | |
# self.main.apply(init_weight) | |
def forward(self, inputs): | |
inputs = inputs.permute(0, 2, 1) | |
outputs = self.main(inputs).permute(0, 2, 1) | |
return outputs | |
class ResBlock(nn.Module): | |
def __init__(self, channel): | |
super(ResBlock, self).__init__() | |
self.model = nn.Sequential( | |
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv1d(channel, channel, kernel_size=3, stride=1, padding=1), | |
) | |
def forward(self, x): | |
residual = x | |
out = self.model(x) | |
out += residual | |
return out | |