Spaces:
Build error
Build error
File size: 13,466 Bytes
02428a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# This script is modified from https://github.com/caizhongang/SMPLer-X/blob/main/common/utils/transforms.py
# Licensed under:
"""
S-Lab License 1.0
Copyright 2022 S-Lab
Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work.
"""
"""
Function rotation_matrix_to_angle_axis, rotation_matrix_to_quaternion, and quaternion_to_angle_axis are
modified from https://github.com/eglxiang/torchgeometry/blob/master/torchgeometry/core/conversions.py
The original code is licensed under the License: https://github.com/eglxiang/torchgeometry/blob/master/LICENSE
We modified the code to make it compatible with the torch>=1.9.0.
"""
import torch
import numpy as np
from config import cfg
from torch.nn import functional as F
def cam2pixel(cam_coord, f, c):
x = cam_coord[:, 0] / cam_coord[:, 2] * f[0] + c[0]
y = cam_coord[:, 1] / cam_coord[:, 2] * f[1] + c[1]
z = cam_coord[:, 2]
return np.stack((x, y, z), 1)
def pixel2cam(pixel_coord, f, c):
x = (pixel_coord[:, 0] - c[0]) / f[0] * pixel_coord[:, 2]
y = (pixel_coord[:, 1] - c[1]) / f[1] * pixel_coord[:, 2]
z = pixel_coord[:, 2]
return np.stack((x, y, z), 1)
def world2cam(world_coord, R, t):
cam_coord = np.dot(R, world_coord.transpose(1, 0)).transpose(1, 0) + t.reshape(1, 3)
return cam_coord
def cam2world(cam_coord, R, t):
world_coord = np.dot(np.linalg.inv(R), (cam_coord - t.reshape(1, 3)).transpose(1, 0)).transpose(1, 0)
return world_coord
def rigid_transform_3D(A, B):
n, dim = A.shape
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n
U, s, V = np.linalg.svd(H)
R = np.dot(np.transpose(V), np.transpose(U))
if np.linalg.det(R) < 0:
s[-1] = -s[-1]
V[2] = -V[2]
R = np.dot(np.transpose(V), np.transpose(U))
varP = np.var(A, axis=0).sum()
c = 1 / varP * np.sum(s)
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B)
return c, R, t
def rigid_align(A, B):
c, R, t = rigid_transform_3D(A, B)
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t
return A2
def transform_joint_to_other_db(src_joint, src_name, dst_name):
src_joint_num = len(src_name)
dst_joint_num = len(dst_name)
new_joint = np.zeros(((dst_joint_num,) + src_joint.shape[1:]), dtype=np.float32)
for src_idx in range(len(src_name)):
name = src_name[src_idx]
if name in dst_name:
dst_idx = dst_name.index(name)
new_joint[dst_idx] = src_joint[src_idx]
return new_joint
def rotation_matrix_to_angle_axis(rotation_matrix):
"""Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
# todo add check that matrix is a valid rotation matrix
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
return quaternion_to_angle_axis(quaternion)
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError("Input size must be a three dimensional tensor. Got {}".format(rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError("Input size must be a N x 3 x 4 tensor. Got {}".format(rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
"""
Modified the code from the original source to make it compatible with the torch>=1.9.0
Original code:
mask_c1 = mask_d2 * (1 - mask_d0_d1)
mask_c2 = (1 - mask_d2) * mask_d0_nd1
mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
"""
# From here
inv_mask_d0_d1 = ~mask_d0_d1
inv_mask_d0_nd1 = ~mask_d0_nd1
inv_mask_d2 = ~mask_d2
mask_c1 = mask_d2 * inv_mask_d0_d1
mask_c2 = inv_mask_d2 * mask_d0_nd1
mask_c3 = inv_mask_d2 * inv_mask_d0_nd1
# Until here
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(
t0_rep * mask_c0
+ t1_rep * mask_c1 # noqa
+ t2_rep * mask_c2
+ t3_rep * mask_c3
) # noqa
q *= 0.5
return q
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rot6d_to_axis_angle(x):
batch_size = x.shape[0]
x = x.view(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix
rot_mat = torch.cat([rot_mat, torch.zeros((batch_size, 3, 1)).to(cfg.device).float()], 2) # 3x4 rotation matrix
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle
axis_angle[torch.isnan(axis_angle)] = 0.0
return axis_angle
def sample_joint_features(img_feat, joint_xy):
height, width = img_feat.shape[2:]
x = joint_xy[:, :, 0] / (width - 1) * 2 - 1
y = joint_xy[:, :, 1] / (height - 1) * 2 - 1
grid = torch.stack((x, y), 2)[:, :, None, :]
img_feat = F.grid_sample(img_feat, grid, align_corners=True)[:, :, :, 0] # batch_size, channel_dim, joint_num
img_feat = img_feat.permute(0, 2, 1).contiguous() # batch_size, joint_num, channel_dim
return img_feat
def soft_argmax_2d(heatmap2d):
batch_size = heatmap2d.shape[0]
height, width = heatmap2d.shape[2:]
heatmap2d = heatmap2d.reshape((batch_size, -1, height * width))
heatmap2d = F.softmax(heatmap2d, 2)
heatmap2d = heatmap2d.reshape((batch_size, -1, height, width))
accu_x = heatmap2d.sum(dim=(2))
accu_y = heatmap2d.sum(dim=(3))
accu_x = accu_x * torch.arange(width).float().to(cfg.device)[None, None, :]
accu_y = accu_y * torch.arange(height).float().to(cfg.device)[None, None, :]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
coord_out = torch.cat((accu_x, accu_y), dim=2)
return coord_out
def soft_argmax_3d(heatmap3d):
batch_size = heatmap3d.shape[0]
depth, height, width = heatmap3d.shape[2:]
heatmap3d = heatmap3d.reshape((batch_size, -1, depth * height * width))
heatmap3d = F.softmax(heatmap3d, 2)
heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width))
accu_x = heatmap3d.sum(dim=(2, 3))
accu_y = heatmap3d.sum(dim=(2, 4))
accu_z = heatmap3d.sum(dim=(3, 4))
accu_x = accu_x * torch.arange(width).float().to(cfg.device)[None, None, :]
accu_y = accu_y * torch.arange(height).float().to(cfg.device)[None, None, :]
accu_z = accu_z * torch.arange(depth).float().to(cfg.device)[None, None, :]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = accu_z.sum(dim=2, keepdim=True)
coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2)
return coord_out
def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio):
bbox = bbox_center.view(-1, 1, 2) + torch.cat(
(-bbox_size.view(-1, 1, 2) / 2.0, bbox_size.view(-1, 1, 2) / 2.0), 1
) # xyxy in (cfg.output_hm_shape[2], cfg.output_hm_shape[1]) space
bbox[:, :, 0] = bbox[:, :, 0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1]
bbox[:, :, 1] = bbox[:, :, 1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0]
bbox = bbox.view(-1, 4)
# xyxy -> xywh
bbox[:, 2] = bbox[:, 2] - bbox[:, 0]
bbox[:, 3] = bbox[:, 3] - bbox[:, 1]
# aspect ratio preserving bbox
w = bbox[:, 2]
h = bbox[:, 3]
c_x = bbox[:, 0] + w / 2.0
c_y = bbox[:, 1] + h / 2.0
mask1 = w > (aspect_ratio * h)
mask2 = w < (aspect_ratio * h)
h[mask1] = w[mask1] / aspect_ratio
w[mask2] = h[mask2] * aspect_ratio
bbox[:, 2] = w * extension_ratio
bbox[:, 3] = h * extension_ratio
bbox[:, 0] = c_x - bbox[:, 2] / 2.0
bbox[:, 1] = c_y - bbox[:, 3] / 2.0
# xywh -> xyxy
bbox[:, 2] = bbox[:, 2] + bbox[:, 0]
bbox[:, 3] = bbox[:, 3] + bbox[:, 1]
return bbox
|