|
import torch |
|
from torch.nn import functional as F |
|
|
|
from utils.hparams import hparams |
|
from utils.pitch_utils import f0_to_coarse, denorm_f0 |
|
|
|
|
|
class Batch2Loss: |
|
''' |
|
pipeline: batch -> insert1 -> module1 -> insert2 -> module2 -> insert3 -> module3 -> insert4 -> module4 -> loss |
|
''' |
|
|
|
@staticmethod |
|
def insert1(pitch_midi, midi_dur, is_slur, |
|
midi_embed, midi_dur_layer, is_slur_embed): |
|
''' |
|
add embeddings for midi, midi_dur, slur |
|
''' |
|
midi_embedding = midi_embed(pitch_midi) |
|
midi_dur_embedding, slur_embedding = 0, 0 |
|
if midi_dur is not None: |
|
midi_dur_embedding = midi_dur_layer(midi_dur[:, :, None]) |
|
if is_slur is not None: |
|
slur_embedding = is_slur_embed(is_slur) |
|
return midi_embedding, midi_dur_embedding, slur_embedding |
|
|
|
@staticmethod |
|
def module1(fs2_encoder, |
|
txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding): |
|
''' |
|
get *encoder_out* == fs2_encoder(*txt_tokens*, some embeddings) |
|
''' |
|
encoder_out = fs2_encoder(txt_tokens, midi_embedding, midi_dur_embedding, slur_embedding) |
|
return encoder_out |
|
|
|
@staticmethod |
|
def insert2(encoder_out, spk_embed_id, spk_embed_dur_id, spk_embed_f0_id, src_nonpadding, |
|
spk_embed_proj): |
|
''' |
|
1. add embeddings for pspk, spk_dur, sk_f0 |
|
2. get *dur_inp* ~= *encoder_out* + *spk_embed_dur* |
|
''' |
|
|
|
|
|
|
|
var_embed = 0 |
|
|
|
|
|
|
|
if hparams['use_spk_embed']: |
|
spk_embed_dur = spk_embed_f0 = spk_embed = spk_embed_proj(spk_embed_id)[:, None, :] |
|
elif hparams['use_spk_id']: |
|
if spk_embed_dur_id is None: |
|
spk_embed_dur_id = spk_embed_id |
|
if spk_embed_f0_id is None: |
|
spk_embed_f0_id = spk_embed_id |
|
spk_embed = spk_embed_proj(spk_embed_id)[:, None, :] |
|
spk_embed_dur = spk_embed_f0 = spk_embed |
|
if hparams['use_split_spk_id']: |
|
spk_embed_dur = spk_embed_dur(spk_embed_dur_id)[:, None, :] |
|
spk_embed_f0 = spk_embed_f0(spk_embed_f0_id)[:, None, :] |
|
else: |
|
spk_embed_dur = spk_embed_f0 = spk_embed = 0 |
|
|
|
|
|
dur_inp = (encoder_out + var_embed + spk_embed_dur) * src_nonpadding |
|
return var_embed, spk_embed, spk_embed_dur, spk_embed_f0, dur_inp |
|
|
|
@staticmethod |
|
def module2(dur_predictor, length_regulator, |
|
dur_input, mel2ph, txt_tokens, all_vowel_tokens, ret, midi_dur=None): |
|
''' |
|
1. get *dur* ~= dur_predictor(*dur_inp*) |
|
2. (mel2ph is None): get *mel2ph* ~= length_regulater(*dur*) |
|
''' |
|
src_padding = (txt_tokens == 0) |
|
dur_input = dur_input.detach() + hparams['predictor_grad'] * (dur_input - dur_input.detach()) |
|
|
|
if mel2ph is None: |
|
dur, xs = dur_predictor.inference(dur_input, src_padding) |
|
ret['dur'] = xs |
|
dur = xs.squeeze(-1).exp() - 1.0 |
|
for i in range(len(dur)): |
|
for j in range(len(dur[i])): |
|
if txt_tokens[i, j] in all_vowel_tokens: |
|
if j < len(dur[i]) - 1 and txt_tokens[i, j + 1] not in all_vowel_tokens: |
|
dur[i, j] = midi_dur[i, j] - dur[i, j + 1] |
|
if dur[i, j] < 0: |
|
dur[i, j] = 0 |
|
dur[i, j + 1] = midi_dur[i, j] |
|
else: |
|
dur[i, j] = midi_dur[i, j] |
|
dur[:, 0] = dur[:, 0] + 0.5 |
|
dur_acc = F.pad(torch.round(torch.cumsum(dur, axis=1)), (1, 0)) |
|
dur = torch.clamp(dur_acc[:, 1:] - dur_acc[:, :-1], min=0).long() |
|
ret['dur_choice'] = dur |
|
mel2ph = length_regulator(dur, src_padding).detach() |
|
else: |
|
ret['dur'] = dur_predictor(dur_input, src_padding) |
|
ret['mel2ph'] = mel2ph |
|
|
|
return mel2ph |
|
|
|
@staticmethod |
|
def insert3(encoder_out, mel2ph, var_embed, spk_embed_f0, src_nonpadding, tgt_nonpadding): |
|
''' |
|
1. get *decoder_inp* ~= gather *encoder_out* according to *mel2ph* |
|
2. get *pitch_inp* ~= *decoder_inp* + *spk_embed_f0* |
|
3. get *pitch_inp_ph* ~= *encoder_out* + *spk_embed_f0* |
|
''' |
|
decoder_inp = F.pad(encoder_out, [0, 0, 1, 0]) |
|
mel2ph_ = mel2ph[..., None].repeat([1, 1, encoder_out.shape[-1]]) |
|
decoder_inp = decoder_inp_origin = torch.gather(decoder_inp, 1, mel2ph_) |
|
|
|
pitch_inp = (decoder_inp_origin + var_embed + spk_embed_f0) * tgt_nonpadding |
|
pitch_inp_ph = (encoder_out + var_embed + spk_embed_f0) * src_nonpadding |
|
return decoder_inp, pitch_inp, pitch_inp_ph |
|
|
|
@staticmethod |
|
def module3(pitch_predictor, pitch_embed, energy_predictor, energy_embed, |
|
pitch_inp, pitch_inp_ph, f0, uv, energy, mel2ph, is_training, ret): |
|
''' |
|
1. get *ret['pitch_pred']*, *ret['energy_pred']* ~= pitch_predictor(*pitch_inp*), energy_predictor(*pitch_inp*) |
|
2. get *pitch_embedding* ~= pitch_embed(f0_to_coarse(denorm_f0(*f0* or *pitch_pred*)) |
|
3. get *energy_embedding* ~= energy_embed(energy_to_coarse(*energy* or *energy_pred*)) |
|
''' |
|
|
|
def add_pitch(decoder_inp, f0, uv, mel2ph, ret, encoder_out=None): |
|
if hparams['pitch_type'] == 'ph': |
|
pitch_pred_inp = encoder_out.detach() + hparams['predictor_grad'] * (encoder_out - encoder_out.detach()) |
|
pitch_padding = (encoder_out.sum().abs() == 0) |
|
ret['pitch_pred'] = pitch_pred = pitch_predictor(pitch_pred_inp) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, None, hparams, pitch_padding=pitch_padding) |
|
pitch = f0_to_coarse(f0_denorm) |
|
pitch = F.pad(pitch, [1, 0]) |
|
pitch = torch.gather(pitch, 1, mel2ph) |
|
pitch_embedding = pitch_embed(pitch) |
|
return pitch_embedding |
|
|
|
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) |
|
|
|
pitch_padding = (mel2ph == 0) |
|
|
|
if hparams['pitch_ar']: |
|
ret['pitch_pred'] = pitch_pred = pitch_predictor(decoder_inp, f0 if is_training else None) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
else: |
|
ret['pitch_pred'] = pitch_pred = pitch_predictor(decoder_inp) |
|
if f0 is None: |
|
f0 = pitch_pred[:, :, 0] |
|
if hparams['use_uv'] and uv is None: |
|
uv = pitch_pred[:, :, 1] > 0 |
|
ret['f0_denorm'] = f0_denorm = denorm_f0(f0, uv, hparams, pitch_padding=pitch_padding) |
|
if pitch_padding is not None: |
|
f0[pitch_padding] = 0 |
|
|
|
pitch = f0_to_coarse(f0_denorm) |
|
pitch_embedding = pitch_embed(pitch) |
|
return pitch_embedding |
|
|
|
def add_energy(decoder_inp, energy, ret): |
|
decoder_inp = decoder_inp.detach() + hparams['predictor_grad'] * (decoder_inp - decoder_inp.detach()) |
|
ret['energy_pred'] = energy_pred = energy_predictor(decoder_inp)[:, :, 0] |
|
if energy is None: |
|
energy = energy_pred |
|
energy = torch.clamp(energy * 256 // 4, max=255).long() |
|
energy_embedding = energy_embed(energy) |
|
return energy_embedding |
|
|
|
|
|
nframes = mel2ph.size(1) |
|
|
|
pitch_embedding = 0 |
|
if hparams['use_pitch_embed']: |
|
if f0 is not None: |
|
delta_l = nframes - f0.size(1) |
|
if delta_l > 0: |
|
f0 = torch.cat((f0, torch.FloatTensor([[x[-1]] * delta_l for x in f0]).to(f0.device)), 1) |
|
f0 = f0[:, :nframes] |
|
if uv is not None: |
|
delta_l = nframes - uv.size(1) |
|
if delta_l > 0: |
|
uv = torch.cat((uv, torch.FloatTensor([[x[-1]] * delta_l for x in uv]).to(uv.device)), 1) |
|
uv = uv[:, :nframes] |
|
pitch_embedding = add_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out=pitch_inp_ph) |
|
|
|
energy_embedding = 0 |
|
if hparams['use_energy_embed']: |
|
if energy is not None: |
|
delta_l = nframes - energy.size(1) |
|
if delta_l > 0: |
|
energy = torch.cat( |
|
(energy, torch.FloatTensor([[x[-1]] * delta_l for x in energy]).to(energy.device)), 1) |
|
energy = energy[:, :nframes] |
|
energy_embedding = add_energy(pitch_inp, energy, ret) |
|
|
|
return pitch_embedding, energy_embedding |
|
|
|
@staticmethod |
|
def insert4(decoder_inp, pitch_embedding, energy_embedding, spk_embed, ret, tgt_nonpadding): |
|
''' |
|
*decoder_inp* ~= *decoder_inp* + embeddings for spk, pitch, energy |
|
''' |
|
ret['decoder_inp'] = decoder_inp = ( |
|
decoder_inp + pitch_embedding + energy_embedding + spk_embed) * tgt_nonpadding |
|
return decoder_inp |
|
|
|
@staticmethod |
|
def module4(diff_main_loss, |
|
norm_spec, decoder_inp_t, ret, K_step, batch_size, device): |
|
''' |
|
training diffusion using spec as input and decoder_inp as condition. |
|
|
|
Args: |
|
norm_spec: (normalized) spec |
|
decoder_inp_t: (transposed) decoder_inp |
|
Returns: |
|
ret['diff_loss'] |
|
''' |
|
t = torch.randint(0, K_step, (batch_size,), device=device).long() |
|
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :] |
|
ret['diff_loss'] = diff_main_loss(norm_spec, t, cond=decoder_inp_t) |
|
|
|
|
|
|