|
import os |
|
from multiprocessing.pool import Pool |
|
|
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.distributions |
|
import torch.nn.functional as F |
|
import torch.optim |
|
import torch.utils.data |
|
from tqdm import tqdm |
|
|
|
import utils |
|
from modules.commons.ssim import ssim |
|
from modules.diff.diffusion import GaussianDiffusion |
|
from modules.diff.net import DiffNet |
|
from modules.vocoders.nsf_hifigan import NsfHifiGAN, nsf_hifigan |
|
from preprocessing.hubertinfer import HubertEncoder |
|
from preprocessing.process_pipeline import get_pitch_parselmouth |
|
from training.base_task import BaseTask |
|
from utils import audio |
|
from utils.hparams import hparams |
|
from utils.pitch_utils import denorm_f0 |
|
from utils.pl_utils import data_loader |
|
from utils.plot import spec_to_figure, f0_to_figure |
|
from utils.svc_utils import SvcDataset |
|
|
|
matplotlib.use('Agg') |
|
DIFF_DECODERS = { |
|
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']) |
|
} |
|
|
|
|
|
class SvcTask(BaseTask): |
|
def __init__(self): |
|
super(SvcTask, self).__init__() |
|
self.vocoder = NsfHifiGAN() |
|
self.phone_encoder = HubertEncoder(hparams['hubert_path']) |
|
self.saving_result_pool = None |
|
self.saving_results_futures = None |
|
self.stats = {} |
|
self.dataset_cls = SvcDataset |
|
self.mse_loss_fn = torch.nn.MSELoss() |
|
mel_losses = hparams['mel_loss'].split("|") |
|
self.loss_and_lambda = {} |
|
for i, l in enumerate(mel_losses): |
|
if l == '': |
|
continue |
|
if ':' in l: |
|
l, lbd = l.split(":") |
|
lbd = float(lbd) |
|
else: |
|
lbd = 1.0 |
|
self.loss_and_lambda[l] = lbd |
|
print("| Mel losses:", self.loss_and_lambda) |
|
|
|
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, |
|
required_batch_size_multiple=-1, endless=False, batch_by_size=True): |
|
devices_cnt = torch.cuda.device_count() |
|
if devices_cnt == 0: |
|
devices_cnt = 1 |
|
if required_batch_size_multiple == -1: |
|
required_batch_size_multiple = devices_cnt |
|
|
|
def shuffle_batches(batches): |
|
np.random.shuffle(batches) |
|
return batches |
|
|
|
if max_tokens is not None: |
|
max_tokens *= devices_cnt |
|
if max_sentences is not None: |
|
max_sentences *= devices_cnt |
|
indices = dataset.ordered_indices() |
|
if batch_by_size: |
|
batch_sampler = utils.batch_by_size( |
|
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, |
|
required_batch_size_multiple=required_batch_size_multiple, |
|
) |
|
else: |
|
batch_sampler = [] |
|
for i in range(0, len(indices), max_sentences): |
|
batch_sampler.append(indices[i:i + max_sentences]) |
|
|
|
if shuffle: |
|
batches = shuffle_batches(list(batch_sampler)) |
|
if endless: |
|
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] |
|
else: |
|
batches = batch_sampler |
|
if endless: |
|
batches = [b for _ in range(1000) for b in batches] |
|
num_workers = dataset.num_workers |
|
if self.trainer.use_ddp: |
|
num_replicas = dist.get_world_size() |
|
rank = dist.get_rank() |
|
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] |
|
return torch.utils.data.DataLoader(dataset, |
|
collate_fn=dataset.collater, |
|
batch_sampler=batches, |
|
num_workers=num_workers, |
|
pin_memory=False) |
|
|
|
def test_start(self): |
|
self.saving_result_pool = Pool(8) |
|
self.saving_results_futures = [] |
|
self.vocoder = nsf_hifigan |
|
|
|
def test_end(self, outputs): |
|
self.saving_result_pool.close() |
|
[f.get() for f in tqdm(self.saving_results_futures)] |
|
self.saving_result_pool.join() |
|
return {} |
|
|
|
@data_loader |
|
def train_dataloader(self): |
|
train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True) |
|
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, |
|
endless=hparams['endless_ds']) |
|
|
|
@data_loader |
|
def val_dataloader(self): |
|
valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False) |
|
return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences) |
|
|
|
@data_loader |
|
def test_dataloader(self): |
|
test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False) |
|
return self.build_dataloader(test_dataset, False, self.max_eval_tokens, |
|
self.max_eval_sentences, batch_by_size=False) |
|
|
|
def build_model(self): |
|
self.build_tts_model() |
|
if hparams['load_ckpt'] != '': |
|
self.load_ckpt(hparams['load_ckpt'], strict=True) |
|
utils.print_arch(self.model) |
|
return self.model |
|
|
|
def build_tts_model(self): |
|
mel_bins = hparams['audio_num_mel_bins'] |
|
self.model = GaussianDiffusion( |
|
phone_encoder=self.phone_encoder, |
|
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), |
|
timesteps=hparams['timesteps'], |
|
K_step=hparams['K_step'], |
|
loss_type=hparams['diff_loss_type'], |
|
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], |
|
) |
|
|
|
def build_optimizer(self, model): |
|
self.optimizer = optimizer = torch.optim.AdamW( |
|
filter(lambda p: p.requires_grad, model.parameters()), |
|
lr=hparams['lr'], |
|
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), |
|
weight_decay=hparams['weight_decay']) |
|
return optimizer |
|
|
|
@staticmethod |
|
def run_model(model, sample, return_output=False, infer=False): |
|
''' |
|
steps: |
|
1. run the full model, calc the main loss |
|
2. calculate loss for dur_predictor, pitch_predictor, energy_predictor |
|
''' |
|
hubert = sample['hubert'] |
|
target = sample['mels'] |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
energy = sample.get('energy') |
|
|
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
output = model(hubert, mel2ph=mel2ph, spk_embed=spk_embed, ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer) |
|
|
|
losses = {} |
|
if 'diff_loss' in output: |
|
losses['mel'] = output['diff_loss'] |
|
if not return_output: |
|
return losses |
|
else: |
|
return losses, output |
|
|
|
def build_scheduler(self, optimizer): |
|
return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) |
|
|
|
def _training_step(self, sample, batch_idx, _): |
|
log_outputs = self.run_model(self.model, sample) |
|
total_loss = sum([v for v in log_outputs.values() if isinstance(v, torch.Tensor) and v.requires_grad]) |
|
log_outputs['batch_size'] = sample['hubert'].size()[0] |
|
log_outputs['lr'] = self.scheduler.get_lr()[0] |
|
return total_loss, log_outputs |
|
|
|
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx): |
|
if optimizer is None: |
|
return |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
if self.scheduler is not None: |
|
self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) |
|
|
|
def validation_step(self, sample, batch_idx): |
|
outputs = {} |
|
hubert = sample['hubert'] |
|
energy = sample.get('energy') |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
mel2ph = sample['mel2ph'] |
|
|
|
outputs['losses'] = {} |
|
|
|
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) |
|
|
|
outputs['total_loss'] = sum(outputs['losses'].values()) |
|
outputs['nsamples'] = sample['nsamples'] |
|
outputs = utils.tensors_to_scalars(outputs) |
|
if batch_idx < hparams['num_valid_plots']: |
|
model_out = self.model( |
|
hubert, spk_embed=spk_embed, mel2ph=mel2ph, f0=sample['f0'], uv=sample['uv'], energy=energy, |
|
ref_mels=None, infer=True |
|
) |
|
|
|
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
pred_f0 = model_out.get('f0_denorm') |
|
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) |
|
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') |
|
if hparams['use_pitch_embed']: |
|
self.plot_pitch(batch_idx, sample, model_out) |
|
return outputs |
|
|
|
def _validation_end(self, outputs): |
|
all_losses_meter = { |
|
'total_loss': utils.AvgrageMeter(), |
|
} |
|
for output in outputs: |
|
n = output['nsamples'] |
|
for k, v in output['losses'].items(): |
|
if k not in all_losses_meter: |
|
all_losses_meter[k] = utils.AvgrageMeter() |
|
all_losses_meter[k].update(v, n) |
|
all_losses_meter['total_loss'].update(output['total_loss'], n) |
|
return {k: round(v.avg, 4) for k, v in all_losses_meter.items()} |
|
|
|
|
|
|
|
|
|
def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None): |
|
if mel_mix_loss is None: |
|
for loss_name, lbd in self.loss_and_lambda.items(): |
|
if 'l1' == loss_name: |
|
l = self.l1_loss(mel_out, target) |
|
elif 'mse' == loss_name: |
|
raise NotImplementedError |
|
elif 'ssim' == loss_name: |
|
l = self.ssim_loss(mel_out, target) |
|
elif 'gdl' == loss_name: |
|
raise NotImplementedError |
|
losses[f'{loss_name}{postfix}'] = l * lbd |
|
else: |
|
raise NotImplementedError |
|
|
|
def l1_loss(self, decoder_output, target): |
|
|
|
|
|
l1_loss = F.l1_loss(decoder_output, target, reduction='none') |
|
weights = self.weights_nonzero_speech(target) |
|
l1_loss = (l1_loss * weights).sum() / weights.sum() |
|
return l1_loss |
|
|
|
def ssim_loss(self, decoder_output, target, bias=6.0): |
|
|
|
|
|
assert decoder_output.shape == target.shape |
|
weights = self.weights_nonzero_speech(target) |
|
decoder_output = decoder_output[:, None] + bias |
|
target = target[:, None] + bias |
|
ssim_loss = 1 - ssim(decoder_output, target, size_average=False) |
|
ssim_loss = (ssim_loss * weights).sum() / weights.sum() |
|
return ssim_loss |
|
|
|
def add_pitch_loss(self, output, sample, losses): |
|
if hparams['pitch_type'] == 'ph': |
|
nonpadding = (sample['txt_tokens'] != 0).float() |
|
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss |
|
losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'], |
|
reduction='none') * nonpadding).sum() \ |
|
/ nonpadding.sum() * hparams['lambda_f0'] |
|
return |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
nonpadding = (mel2ph != 0).float() |
|
if hparams['pitch_type'] == 'frame': |
|
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding) |
|
|
|
@staticmethod |
|
def add_f0_loss(p_pred, f0, uv, losses, nonpadding): |
|
assert p_pred[..., 0].shape == f0.shape |
|
if hparams['use_uv']: |
|
assert p_pred[..., 1].shape == uv.shape |
|
losses['uv'] = (F.binary_cross_entropy_with_logits( |
|
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \ |
|
/ nonpadding.sum() * hparams['lambda_uv'] |
|
nonpadding = nonpadding * (uv == 0).float() |
|
|
|
f0_pred = p_pred[:, :, 0] |
|
if hparams['pitch_loss'] in ['l1', 'l2']: |
|
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss |
|
losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \ |
|
/ nonpadding.sum() * hparams['lambda_f0'] |
|
elif hparams['pitch_loss'] == 'ssim': |
|
return NotImplementedError |
|
|
|
@staticmethod |
|
def add_energy_loss(energy_pred, energy, losses): |
|
nonpadding = (energy != 0).float() |
|
loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum() |
|
loss = loss * hparams['lambda_energy'] |
|
losses['e'] = loss |
|
|
|
|
|
|
|
|
|
def plot_mel(self, batch_idx, spec, spec_out, name=None): |
|
spec_cat = torch.cat([spec, spec_out], -1) |
|
name = f'mel_{batch_idx}' if name is None else name |
|
vmin = hparams['mel_vmin'] |
|
vmax = hparams['mel_vmax'] |
|
self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step) |
|
|
|
def plot_pitch(self, batch_idx, sample, model_out): |
|
f0 = sample['f0'] |
|
if hparams['pitch_type'] == 'ph': |
|
mel2ph = sample['mel2ph'] |
|
f0 = self.expand_f0_ph(f0, mel2ph) |
|
f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph) |
|
self.logger.experiment.add_figure( |
|
f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step) |
|
return |
|
f0 = denorm_f0(f0, sample['uv'], hparams) |
|
if hparams['pitch_type'] == 'frame': |
|
pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], sample['uv'], hparams) |
|
self.logger.experiment.add_figure( |
|
f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step) |
|
|
|
def plot_wav(self, batch_idx, gt_wav, wav_out, is_mel=False, gt_f0=None, f0=None, name=None): |
|
gt_wav = gt_wav[0].cpu().numpy() |
|
wav_out = wav_out[0].cpu().numpy() |
|
gt_f0 = gt_f0[0].cpu().numpy() |
|
f0 = f0[0].cpu().numpy() |
|
if is_mel: |
|
gt_wav = self.vocoder.spec2wav(gt_wav, f0=gt_f0) |
|
wav_out = self.vocoder.spec2wav(wav_out, f0=f0) |
|
self.logger.experiment.add_audio(f'gt_{batch_idx}', gt_wav, sample_rate=hparams['audio_sample_rate'], |
|
global_step=self.global_step) |
|
self.logger.experiment.add_audio(f'wav_{batch_idx}', wav_out, sample_rate=hparams['audio_sample_rate'], |
|
global_step=self.global_step) |
|
|
|
|
|
|
|
|
|
def test_step(self, sample, batch_idx): |
|
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') |
|
hubert = sample['hubert'] |
|
ref_mels = None |
|
mel2ph = sample['mel2ph'] |
|
f0 = sample['f0'] |
|
uv = sample['uv'] |
|
outputs = self.model(hubert, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, |
|
infer=True) |
|
sample['outputs'] = self.model.out2mel(outputs['mel_out']) |
|
sample['mel2ph_pred'] = outputs['mel2ph'] |
|
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) |
|
sample['f0_pred'] = outputs.get('f0_denorm') |
|
return self.after_infer(sample) |
|
|
|
def after_infer(self, predictions): |
|
if self.saving_result_pool is None and not hparams['profile_infer']: |
|
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16)) |
|
self.saving_results_futures = [] |
|
predictions = utils.unpack_dict_to_list(predictions) |
|
t = tqdm(predictions) |
|
for num_predictions, prediction in enumerate(t): |
|
for k, v in prediction.items(): |
|
if type(v) is torch.Tensor: |
|
prediction[k] = v.cpu().numpy() |
|
|
|
item_name = prediction.get('item_name') |
|
|
|
|
|
mel_gt = prediction["mels"] |
|
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0 |
|
mel_gt = mel_gt[mel_gt_mask] |
|
mel_pred = prediction["outputs"] |
|
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0 |
|
mel_pred = mel_pred[mel_pred_mask] |
|
mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax']) |
|
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax']) |
|
|
|
f0_gt = prediction.get("f0") |
|
f0_pred = f0_gt |
|
if f0_pred is not None: |
|
f0_gt = f0_gt[mel_gt_mask] |
|
if len(f0_pred) > len(mel_pred_mask): |
|
f0_pred = f0_pred[:len(mel_pred_mask)] |
|
f0_pred = f0_pred[mel_pred_mask] |
|
gen_dir = os.path.join(hparams['work_dir'], |
|
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') |
|
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred) |
|
if not hparams['profile_infer']: |
|
os.makedirs(gen_dir, exist_ok=True) |
|
os.makedirs(f'{gen_dir}/wavs', exist_ok=True) |
|
os.makedirs(f'{gen_dir}/plot', exist_ok=True) |
|
os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True) |
|
os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True) |
|
self.saving_results_futures.append( |
|
self.saving_result_pool.apply_async(self.save_result, args=[ |
|
wav_pred, mel_pred, 'P', item_name, gen_dir])) |
|
|
|
if mel_gt is not None and hparams['save_gt']: |
|
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) |
|
self.saving_results_futures.append( |
|
self.saving_result_pool.apply_async(self.save_result, args=[ |
|
wav_gt, mel_gt, 'G', item_name, gen_dir])) |
|
if hparams['save_f0']: |
|
import matplotlib.pyplot as plt |
|
f0_pred_ = f0_pred |
|
f0_gt_, _ = get_pitch_parselmouth(wav_gt, mel_gt, hparams) |
|
fig = plt.figure() |
|
plt.plot(f0_pred_, label=r'$f0_P$') |
|
plt.plot(f0_gt_, label=r'$f0_G$') |
|
plt.legend() |
|
plt.tight_layout() |
|
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png') |
|
plt.close(fig) |
|
|
|
t.set_description( |
|
f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") |
|
else: |
|
if 'gen_wav_time' not in self.stats: |
|
self.stats['gen_wav_time'] = 0 |
|
self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate'] |
|
print('gen_wav_time: ', self.stats['gen_wav_time']) |
|
|
|
return {} |
|
|
|
@staticmethod |
|
def save_result(wav_out, mel, prefix, item_name, gen_dir): |
|
item_name = item_name.replace('/', '-') |
|
base_fn = f'[{item_name}][{prefix}]' |
|
base_fn += ('-' + hparams['exp_name']) |
|
np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel) |
|
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', 24000, |
|
norm=hparams['out_wav_norm']) |
|
fig = plt.figure(figsize=(14, 10)) |
|
spec_vmin = hparams['mel_vmin'] |
|
spec_vmax = hparams['mel_vmax'] |
|
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) |
|
fig.colorbar(heatmap) |
|
f0, _ = get_pitch_parselmouth(wav_out, mel, hparams) |
|
f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0) |
|
plt.plot(f0, c='white', linewidth=1, alpha=0.6) |
|
plt.tight_layout() |
|
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000) |
|
plt.close(fig) |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
def expand_f0_ph(f0, mel2ph): |
|
f0 = denorm_f0(f0, None, hparams) |
|
f0 = F.pad(f0, [1, 0]) |
|
f0 = torch.gather(f0, 1, mel2ph) |
|
return f0 |
|
|
|
@staticmethod |
|
def weights_nonzero_speech(target): |
|
|
|
|
|
dim = target.size(-1) |
|
return target.abs().sum(-1, keepdim=True).ne(0).float().repeat(1, 1, dim) |
|
|