|
import os |
|
|
|
import torch |
|
|
|
from modules.nsf_hifigan.models import load_model |
|
from modules.nsf_hifigan.nvSTFT import load_wav_to_torch, STFT |
|
from utils.hparams import hparams |
|
|
|
nsf_hifigan = None |
|
|
|
|
|
def register_vocoder(cls): |
|
global nsf_hifigan |
|
nsf_hifigan = cls |
|
return cls |
|
|
|
|
|
@register_vocoder |
|
class NsfHifiGAN(): |
|
def __init__(self, device=None): |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = device |
|
model_path = hparams['vocoder_ckpt'] |
|
if os.path.exists(model_path): |
|
print('| Load HifiGAN: ', model_path) |
|
self.model, self.h = load_model(model_path, device=self.device) |
|
else: |
|
print('Error: HifiGAN model file is not found!') |
|
|
|
def spec2wav(self, mel, **kwargs): |
|
if self.h.sampling_rate != hparams['audio_sample_rate']: |
|
print('Mismatch parameters: hparams[\'audio_sample_rate\']=', hparams['audio_sample_rate'], '!=', |
|
self.h.sampling_rate, '(vocoder)') |
|
if self.h.num_mels != hparams['audio_num_mel_bins']: |
|
print('Mismatch parameters: hparams[\'audio_num_mel_bins\']=', hparams['audio_num_mel_bins'], '!=', |
|
self.h.num_mels, '(vocoder)') |
|
if self.h.n_fft != hparams['fft_size']: |
|
print('Mismatch parameters: hparams[\'fft_size\']=', hparams['fft_size'], '!=', self.h.n_fft, '(vocoder)') |
|
if self.h.win_size != hparams['win_size']: |
|
print('Mismatch parameters: hparams[\'win_size\']=', hparams['win_size'], '!=', self.h.win_size, |
|
'(vocoder)') |
|
if self.h.hop_size != hparams['hop_size']: |
|
print('Mismatch parameters: hparams[\'hop_size\']=', hparams['hop_size'], '!=', self.h.hop_size, |
|
'(vocoder)') |
|
if self.h.fmin != hparams['fmin']: |
|
print('Mismatch parameters: hparams[\'fmin\']=', hparams['fmin'], '!=', self.h.fmin, '(vocoder)') |
|
if self.h.fmax != hparams['fmax']: |
|
print('Mismatch parameters: hparams[\'fmax\']=', hparams['fmax'], '!=', self.h.fmax, '(vocoder)') |
|
with torch.no_grad(): |
|
c = torch.FloatTensor(mel).unsqueeze(0).transpose(2, 1).to(self.device) |
|
|
|
c = 2.30259 * c |
|
f0 = kwargs.get('f0') |
|
f0 = torch.FloatTensor(f0[None, :]).to(self.device) |
|
y = self.model(c, f0).view(-1) |
|
wav_out = y.cpu().numpy() |
|
return wav_out |
|
|
|
@staticmethod |
|
def wav2spec(inp_path, device=None): |
|
if device is None: |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
sampling_rate = hparams['audio_sample_rate'] |
|
num_mels = hparams['audio_num_mel_bins'] |
|
n_fft = hparams['fft_size'] |
|
win_size = hparams['win_size'] |
|
hop_size = hparams['hop_size'] |
|
fmin = hparams['fmin'] |
|
fmax = hparams['fmax'] |
|
stft = STFT(sampling_rate, num_mels, n_fft, win_size, hop_size, fmin, fmax) |
|
with torch.no_grad(): |
|
wav_torch, _ = load_wav_to_torch(inp_path, target_sr=stft.target_sr) |
|
mel_torch = stft.get_mel(wav_torch.unsqueeze(0).to(device)).squeeze(0).T |
|
|
|
mel_torch = 0.434294 * mel_torch |
|
return wav_torch.cpu().numpy(), mel_torch.cpu().numpy() |
|
|