File size: 12,105 Bytes
a8eb386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import requests
import random
import re

from PIL import Image


def mostRecentImg(imgs:str):
    mostRecent = imgs[0].split('-')
    for per in imgs[1:]:
        splits = per.split('-')
        if splits[0] > mostRecent[0]: # year
            mostRecent = splits
        elif splits[1] > mostRecent[1]: # month
            mostRecent = splits
        elif splits[2] > mostRecent[2]: # day
            mostRecent = splits
        elif splits[3] > mostRecent[3]:  # hour
            mostRecent = splits
        elif splits[4] > mostRecent[4]:  # minute
            mostRecent = splits
        elif splits[5] > mostRecent[5]:  # second
            mostRecent = splits
    full = '-'.join(mostRecent)
    return full


def getAddrFromIP(ip:str) -> dict:
    url = "https://www.ip138.com/iplookup.asp?ip={}&action=2".format(ip)
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.100 Safari/537.36'
    }

    # 获取响应
    response = requests.get(url=url, headers=headers)
    response.encoding = "gb2312"

    html = response.text

    info = dict()
    for match in re.finditer('"(prov|city|ct)":"(.*?)"', html):
        divide = match.group().split(":")
        info["{}".format(divide[0].strip('"'))] = divide[1].strip('"')
    return info

def RandomEmail(emailType=None, rang=None):
    __emailtype = ["@qq.com", "@163.com", "@126.com", "@189.com", "@gmail.com"]
    # 如果没有指定邮箱类型,默认在 __emailtype中随机一个
    if emailType == None:
        __randomEmail = random.choice(__emailtype)
    else:
        __randomEmail = emailType
    # 如果没有指定邮箱长度,默认在4-10之间随机
    if rang == None:
        __rang = random.randint(6, 10)
    else:
        __rang = int(rang)
    __Number = "0123456789qbcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPWRSTUVWXYZ"
    __randomNumber = "".join(random.choice(__Number) for i in range(__rang))
    _email = __randomNumber + __randomEmail
    return _email

# pytorch模型
import torch as t
import torchvision as tv

device = t.device("cpu")
img_size = 256
normalize = tv.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = tv.transforms.Compose(
    [tv.transforms.Resize([img_size, img_size]), tv.transforms.CenterCrop([img_size, img_size]),
     tv.transforms.ToTensor(), normalize])

Apple = ['[Apple_scab]', '[Black_rot]', '[Cedar_apple_rust]', '[healthy]']
Cherry = ['[Powdery_mildew]', '[healthy]']
Corn = ['[Cercospora_leaf_spot] [Gray_leaf_spot]', '[Common_rust]', '[Northern_Leaf_Blight]', '[healthy]']
Grape = ['[Black_rot]', '[Esca_Black_Measles]', '[Leaf_blight]', '[healthy]']
Peach = ['[Bacterial_spot]', '[healthy]']
Pepper = ['[Bacterial_spot]', '[healthy]']
Potato = ['[Early_blight]', '[Late_blight]', '[healthy]']
Tomato = ['[Target_Spot]', '[YellowLeaf_Curl_Virus]', '[Bacterial_spot]', '[Early_blight]', '[healthy]', '[Late_blight]', '[Leaf_Mold]', '[Septoria_leaf_spot]', '[Spider_mites]']
classname = ["apple", "cherry", "corn", "grape", "peach", "pepper", "potato", "tomato"]
classes = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
en2ch = {"Apple [Apple_scab]": "苹果 黑星病", "Apple [Black_rot]": "苹果 黑腐病", "Apple [Cedar_apple_rust]": "苹果 胶锈菌瘿", "Apple [healthy]": "苹果 健康",

         "Cherry [Powdery_mildew]": "樱桃 白粉病", "Cherry [healthy]": "樱桃 健康",

         "Corn [Cercospora_leaf_spot] [Gray_leaf_spot]": "玉米 叶斑病 灰斑病", "Corn [Common_rust]": "玉米 锈病", "Corn [Northern_Leaf_Blight]": "玉米 大斑病", "Corn [healthy]": "玉米 健康",

         "Grape [Black_rot]": "葡萄 黑腐病", "Grape [Esca_Black_Measles]": "葡萄 伊斯卡黑色麻疹", "Grape [Leaf_blight]": "葡萄 叶疫病", "Grape [healthy]": "葡萄 健康",

         "Peach [Bacterial_spot]": "桃子 细菌性斑点病", "Peach [healthy]": "桃子 健康",

         "Pepper [Bacterial_spot]": "胡椒 细菌性斑点病", "Pepper [healthy]": "胡椒 健康",

         "Potato [Early_blight]": "土豆 早疫病", "Potato [healthy]": "土豆 健康", "Potato [Late_blight]": "土豆 晚疫病",

         'Tomato [Target_Spot]': "西红柿 靶斑病", 'Tomato [YellowLeaf_Curl_Virus]': "西红柿 黄化曲叶病毒",
         'Tomato [Bacterial_spot]': "西红柿 细菌性斑点病", 'Tomato [Early_blight]': "西红柿 早疫病",
         'Tomato [healthy]': "西红柿 健康", 'Tomato [Late_blight]': "西红柿 晚疫病",
         'Tomato [Leaf_Mold]': "西红柿 叶霉病", 'Tomato [Septoria_leaf_spot]': "西红柿 针壳孢叶斑病",
         'Tomato [Spider_mites]': "西红柿 蜘蛛螨",

         "apple [apple scab]": "苹果 [苹果黑星病]",
         "apple [black rot]": "苹果 [黑腐病]",
         "apple [cedar apple rust]": "苹果 [雪松苹果锈病]",
         "apple [healthy]": "苹果 [健康]",
         "blueberry [healthy]": "蓝莓 [健康]",
         "cherry [including sour] [powdery mildew]": "樱桃 [含酸][白粉病]",
         "cherry [including sour] [healthy]": "樱桃 [包括酸的][健康的]",
         "corn [maize cercospora leaf spot] [gray leaf spot]": "玉米 [玉米褐斑病叶斑病][灰斑病]",
         "corn [maize common rust]": "玉米 [玉米普通锈病]",
         "corn [maize northern leaf blight]": "玉米 [玉米北叶枯病]",
         "corn [healthy]": "玉米 [健康]",
         "grape [black rot]": "葡萄 [黑腐病]",
         "grape [esca black measles]": "葡萄 [埃斯卡黑麻疹]",
         "grape [leaf blight] [isariopsis leaf spot]": "葡萄 [叶枯病][狭叶草叶斑病]",
         "grape [healthy]": "葡萄 [健康]",
         "orange [haunglongbing citrus greening]": "柑桔 [鬼龙槟榔]",
         "peach [bacterial spot]": "桃子 [细菌性斑点病]",
         "peach [healthy]": "桃子 [健康]",
         "bellpepper [bacterial spot]": "灯笼椒 [细菌性斑点病]",
         "bellpepper [healthy]": "灯笼椒 [健康]",
         "potato [early blight]": "土豆 [早疫病]",
         "potato [late blight]": "土豆 [晚疫病]",
         "potato [healthy]": "土豆 [健康]",
         "raspberry [healthy]": "覆盆子 [健康]",
         "soybean [healthy]": "大豆 [健康]",
         "squash [powdery mildew]": "南瓜 [白粉病]",
         "strawberry [leaf scorch]": "草莓 [叶子枯萎]",
         "strawberry [healthy]": "草莓 [健康]",
         "tomato [bacterial spot]": "番茄 [细菌性斑点病]",
         "tomato [early blight]": "番茄 [早疫病]",
         "tomato [late blight]": "番茄 [晚疫病]",
         "tomato [leaf mold]": "番茄 [霉菌]",
         "tomato [septoria leaf spot]": "番茄 [斑疹叶]",
         "tomato [spider mites] [two spotted spider mite]": "番茄 [蜘蛛螨][两斑蜘蛛螨]",
         "tomato [target spot]": "番茄 [靶斑病]",
         "tomato [yellow leaf curl virus]": "番茄 [黄曲叶病毒]",
         "tomato [mosaic virus]": "番茄 [花叶病毒]",
         "tomato [healthy]": "番茄 [健康]"
         }


def infer(model, image_PIL, isShowSoftmax=False):
    t.no_grad()

    image_tensor = transform(image_PIL)
    # 以下语句等效于 img = torch.unsqueeze(image_tensor, 0)
    image_tensor.unsqueeze_(0)
    # 没有这句话会报错
    image_tensor = image_tensor.to(device)
    out = model(image_tensor)
    # 得到预测结果,并且从大到小排序
    _, indices = t.sort(out, descending=True)

    # 返回每个预测值的百分数
    percentage = t.nn.functional.softmax(out, dim=1)[0] * 100

    # 是否显示每个分类的预测值
    item = indices[0]
    if isShowSoftmax:
        for idx in item:
            ss = percentage[idx]
            value = ss.item()
            name = classes[idx]
            # print('名称:', name, '预测值:', value)

    # 预测最大值
    _, predicted = t.max(out.data, 1)
    maxPredicted = classes[predicted.item()]
    maxAccuracy = percentage[item[0]].item()
    return int(maxPredicted)-1, maxAccuracy

model_Apple = t.load('static/models/applemodel.pkl', map_location=device)
model_Apple = model_Apple.to(device)
model_Apple.eval()
model_Cherry = t.load('static/models/cherrymodel.pkl', map_location=device)
model_Cherry = model_Cherry.to(device)
model_Cherry.eval()
model_Corn = t.load('static/models/cornmodel.pkl', map_location=device)
model_Corn = model_Corn.to(device)
model_Corn.eval()
model_Grape = t.load('static/models/grapemodel.pkl', map_location=device)
model_Grape = model_Grape.to(device)
model_Grape.eval()
model_Peach = t.load('static/models/peachmodel.pkl', map_location=device)
model_Peach = model_Peach.to(device)
model_Peach.eval()
model_Pepper = t.load('static/models/peppermodel.pkl', map_location=device)
model_Pepper = model_Pepper.to(device)
model_Pepper.eval()
model_Potato = t.load('static/models/potatomodel.pkl', map_location=device)
model_Potato = model_Potato.to(device)
model_Potato.eval()
model_Tomato = t.load('static/models/tomatomodel.pkl', map_location=device)
model_Tomato = model_Tomato.to(device)
model_Tomato.eval()


def infer_special(value, image):
    print("预测{}".format(value))
    condition, val = infer(eval("model_{}".format(value)), image, True)
    condition = eval("{}[condition]".format(value))
    val = str(float(val) / 100)[:9]
    ch = en2ch[' '.join([value, condition])]
    return {'prediction': {'species': ch.split(' ')[0], 'condition': ' '.join(ch.split(' ')[1:]), 'value': val}, 'conditionen': condition}


import datetime
from sqlalchemy import and_, or_
from flask import render_template
from detectweb.models.predict import Predict
week, month, year, tenyear = 7, 30, 360, 3600
delta = {"week": 1, "month": 1, "year": 30, "tenyear": 360}


def getStatistics(timeline, type_, all_of_same_city, time_now, current_user):
    assign_timeline = {"week": -1, "month": -1, "year": -1, "tenyear": -1}
    assign_type = {"allkinds": -1, "apple": -1, "cherry": -1, "corn": -1, "grape": -1,
                   "peach": -1, "pepper": -1, "potato": -1, "tomato": -1}
    if timeline not in assign_timeline.keys() or type_ not in assign_type.keys():
        return render_template('404.html')
    alltimes = []
    # 最近一周数据
    predicts_certain_time = eval("all_of_same_city.filter(and_((Predict.predict_time >= time_now - datetime.timedelta(days={})), Predict.predict_time <= time_now))".format(timeline))
    if type_ != "allkinds":
        predicts_certain_time = eval("predicts_certain_time.filter(or_(Predict.predict_result.like('{}%'), Predict.predict_result.like('{}%')))".format(type_, type_.capitalize()))

    alltimes.append(predicts_certain_time.count())
    last_time = predicts_certain_time
    for i in range(eval(timeline)-delta[timeline], 0, -delta[timeline]):
        this_time = last_time.filter(and_((Predict.predict_time >= time_now - datetime.timedelta(days=i)), Predict.predict_time <= time_now))
        last_time = this_time
        alltimes.append(this_time.count())
    assign_timeline[timeline] = alltimes
    assign_type[type_] = 1
    return render_template(
        'dashboard.html',
        assign_timeline=assign_timeline,
        assign_type=assign_type,
        timeline=timeline,
        type_=type_,
        user=current_user)

# def init_model(value):
#     exec("model_{} = t.load('static/models/{}model.pkl', map_location=device)".format(value, value.lower()))
#     exec("model_{} = model_{}.to(device)".format(value, value))
#     eval("model_{}.eval()".format(value))
#     return eval("model_{}".format(value))

# def delete_model(model):
#     try:
#         del model
#         return True
#     except:
#         return False

# from memory_profiler import profile
# @profile
# def infer_special(value, image):
#     model = init_model(value)
#     print("预测{}".format(value))
#     condition, val = infer(model, image, True)
#     condition = eval("{}[condition]".format(value))
#     val = str(float(val) / 100)[:9]
#     del model
#     return {'prediction': {'species': value, 'condition': condition, 'value': val}}