File size: 12,105 Bytes
a8eb386 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import requests
import random
import re
from PIL import Image
def mostRecentImg(imgs:str):
mostRecent = imgs[0].split('-')
for per in imgs[1:]:
splits = per.split('-')
if splits[0] > mostRecent[0]: # year
mostRecent = splits
elif splits[1] > mostRecent[1]: # month
mostRecent = splits
elif splits[2] > mostRecent[2]: # day
mostRecent = splits
elif splits[3] > mostRecent[3]: # hour
mostRecent = splits
elif splits[4] > mostRecent[4]: # minute
mostRecent = splits
elif splits[5] > mostRecent[5]: # second
mostRecent = splits
full = '-'.join(mostRecent)
return full
def getAddrFromIP(ip:str) -> dict:
url = "https://www.ip138.com/iplookup.asp?ip={}&action=2".format(ip)
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.100 Safari/537.36'
}
# 获取响应
response = requests.get(url=url, headers=headers)
response.encoding = "gb2312"
html = response.text
info = dict()
for match in re.finditer('"(prov|city|ct)":"(.*?)"', html):
divide = match.group().split(":")
info["{}".format(divide[0].strip('"'))] = divide[1].strip('"')
return info
def RandomEmail(emailType=None, rang=None):
__emailtype = ["@qq.com", "@163.com", "@126.com", "@189.com", "@gmail.com"]
# 如果没有指定邮箱类型,默认在 __emailtype中随机一个
if emailType == None:
__randomEmail = random.choice(__emailtype)
else:
__randomEmail = emailType
# 如果没有指定邮箱长度,默认在4-10之间随机
if rang == None:
__rang = random.randint(6, 10)
else:
__rang = int(rang)
__Number = "0123456789qbcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPWRSTUVWXYZ"
__randomNumber = "".join(random.choice(__Number) for i in range(__rang))
_email = __randomNumber + __randomEmail
return _email
# pytorch模型
import torch as t
import torchvision as tv
device = t.device("cpu")
img_size = 256
normalize = tv.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = tv.transforms.Compose(
[tv.transforms.Resize([img_size, img_size]), tv.transforms.CenterCrop([img_size, img_size]),
tv.transforms.ToTensor(), normalize])
Apple = ['[Apple_scab]', '[Black_rot]', '[Cedar_apple_rust]', '[healthy]']
Cherry = ['[Powdery_mildew]', '[healthy]']
Corn = ['[Cercospora_leaf_spot] [Gray_leaf_spot]', '[Common_rust]', '[Northern_Leaf_Blight]', '[healthy]']
Grape = ['[Black_rot]', '[Esca_Black_Measles]', '[Leaf_blight]', '[healthy]']
Peach = ['[Bacterial_spot]', '[healthy]']
Pepper = ['[Bacterial_spot]', '[healthy]']
Potato = ['[Early_blight]', '[Late_blight]', '[healthy]']
Tomato = ['[Target_Spot]', '[YellowLeaf_Curl_Virus]', '[Bacterial_spot]', '[Early_blight]', '[healthy]', '[Late_blight]', '[Leaf_Mold]', '[Septoria_leaf_spot]', '[Spider_mites]']
classname = ["apple", "cherry", "corn", "grape", "peach", "pepper", "potato", "tomato"]
classes = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
en2ch = {"Apple [Apple_scab]": "苹果 黑星病", "Apple [Black_rot]": "苹果 黑腐病", "Apple [Cedar_apple_rust]": "苹果 胶锈菌瘿", "Apple [healthy]": "苹果 健康",
"Cherry [Powdery_mildew]": "樱桃 白粉病", "Cherry [healthy]": "樱桃 健康",
"Corn [Cercospora_leaf_spot] [Gray_leaf_spot]": "玉米 叶斑病 灰斑病", "Corn [Common_rust]": "玉米 锈病", "Corn [Northern_Leaf_Blight]": "玉米 大斑病", "Corn [healthy]": "玉米 健康",
"Grape [Black_rot]": "葡萄 黑腐病", "Grape [Esca_Black_Measles]": "葡萄 伊斯卡黑色麻疹", "Grape [Leaf_blight]": "葡萄 叶疫病", "Grape [healthy]": "葡萄 健康",
"Peach [Bacterial_spot]": "桃子 细菌性斑点病", "Peach [healthy]": "桃子 健康",
"Pepper [Bacterial_spot]": "胡椒 细菌性斑点病", "Pepper [healthy]": "胡椒 健康",
"Potato [Early_blight]": "土豆 早疫病", "Potato [healthy]": "土豆 健康", "Potato [Late_blight]": "土豆 晚疫病",
'Tomato [Target_Spot]': "西红柿 靶斑病", 'Tomato [YellowLeaf_Curl_Virus]': "西红柿 黄化曲叶病毒",
'Tomato [Bacterial_spot]': "西红柿 细菌性斑点病", 'Tomato [Early_blight]': "西红柿 早疫病",
'Tomato [healthy]': "西红柿 健康", 'Tomato [Late_blight]': "西红柿 晚疫病",
'Tomato [Leaf_Mold]': "西红柿 叶霉病", 'Tomato [Septoria_leaf_spot]': "西红柿 针壳孢叶斑病",
'Tomato [Spider_mites]': "西红柿 蜘蛛螨",
"apple [apple scab]": "苹果 [苹果黑星病]",
"apple [black rot]": "苹果 [黑腐病]",
"apple [cedar apple rust]": "苹果 [雪松苹果锈病]",
"apple [healthy]": "苹果 [健康]",
"blueberry [healthy]": "蓝莓 [健康]",
"cherry [including sour] [powdery mildew]": "樱桃 [含酸][白粉病]",
"cherry [including sour] [healthy]": "樱桃 [包括酸的][健康的]",
"corn [maize cercospora leaf spot] [gray leaf spot]": "玉米 [玉米褐斑病叶斑病][灰斑病]",
"corn [maize common rust]": "玉米 [玉米普通锈病]",
"corn [maize northern leaf blight]": "玉米 [玉米北叶枯病]",
"corn [healthy]": "玉米 [健康]",
"grape [black rot]": "葡萄 [黑腐病]",
"grape [esca black measles]": "葡萄 [埃斯卡黑麻疹]",
"grape [leaf blight] [isariopsis leaf spot]": "葡萄 [叶枯病][狭叶草叶斑病]",
"grape [healthy]": "葡萄 [健康]",
"orange [haunglongbing citrus greening]": "柑桔 [鬼龙槟榔]",
"peach [bacterial spot]": "桃子 [细菌性斑点病]",
"peach [healthy]": "桃子 [健康]",
"bellpepper [bacterial spot]": "灯笼椒 [细菌性斑点病]",
"bellpepper [healthy]": "灯笼椒 [健康]",
"potato [early blight]": "土豆 [早疫病]",
"potato [late blight]": "土豆 [晚疫病]",
"potato [healthy]": "土豆 [健康]",
"raspberry [healthy]": "覆盆子 [健康]",
"soybean [healthy]": "大豆 [健康]",
"squash [powdery mildew]": "南瓜 [白粉病]",
"strawberry [leaf scorch]": "草莓 [叶子枯萎]",
"strawberry [healthy]": "草莓 [健康]",
"tomato [bacterial spot]": "番茄 [细菌性斑点病]",
"tomato [early blight]": "番茄 [早疫病]",
"tomato [late blight]": "番茄 [晚疫病]",
"tomato [leaf mold]": "番茄 [霉菌]",
"tomato [septoria leaf spot]": "番茄 [斑疹叶]",
"tomato [spider mites] [two spotted spider mite]": "番茄 [蜘蛛螨][两斑蜘蛛螨]",
"tomato [target spot]": "番茄 [靶斑病]",
"tomato [yellow leaf curl virus]": "番茄 [黄曲叶病毒]",
"tomato [mosaic virus]": "番茄 [花叶病毒]",
"tomato [healthy]": "番茄 [健康]"
}
def infer(model, image_PIL, isShowSoftmax=False):
t.no_grad()
image_tensor = transform(image_PIL)
# 以下语句等效于 img = torch.unsqueeze(image_tensor, 0)
image_tensor.unsqueeze_(0)
# 没有这句话会报错
image_tensor = image_tensor.to(device)
out = model(image_tensor)
# 得到预测结果,并且从大到小排序
_, indices = t.sort(out, descending=True)
# 返回每个预测值的百分数
percentage = t.nn.functional.softmax(out, dim=1)[0] * 100
# 是否显示每个分类的预测值
item = indices[0]
if isShowSoftmax:
for idx in item:
ss = percentage[idx]
value = ss.item()
name = classes[idx]
# print('名称:', name, '预测值:', value)
# 预测最大值
_, predicted = t.max(out.data, 1)
maxPredicted = classes[predicted.item()]
maxAccuracy = percentage[item[0]].item()
return int(maxPredicted)-1, maxAccuracy
model_Apple = t.load('static/models/applemodel.pkl', map_location=device)
model_Apple = model_Apple.to(device)
model_Apple.eval()
model_Cherry = t.load('static/models/cherrymodel.pkl', map_location=device)
model_Cherry = model_Cherry.to(device)
model_Cherry.eval()
model_Corn = t.load('static/models/cornmodel.pkl', map_location=device)
model_Corn = model_Corn.to(device)
model_Corn.eval()
model_Grape = t.load('static/models/grapemodel.pkl', map_location=device)
model_Grape = model_Grape.to(device)
model_Grape.eval()
model_Peach = t.load('static/models/peachmodel.pkl', map_location=device)
model_Peach = model_Peach.to(device)
model_Peach.eval()
model_Pepper = t.load('static/models/peppermodel.pkl', map_location=device)
model_Pepper = model_Pepper.to(device)
model_Pepper.eval()
model_Potato = t.load('static/models/potatomodel.pkl', map_location=device)
model_Potato = model_Potato.to(device)
model_Potato.eval()
model_Tomato = t.load('static/models/tomatomodel.pkl', map_location=device)
model_Tomato = model_Tomato.to(device)
model_Tomato.eval()
def infer_special(value, image):
print("预测{}".format(value))
condition, val = infer(eval("model_{}".format(value)), image, True)
condition = eval("{}[condition]".format(value))
val = str(float(val) / 100)[:9]
ch = en2ch[' '.join([value, condition])]
return {'prediction': {'species': ch.split(' ')[0], 'condition': ' '.join(ch.split(' ')[1:]), 'value': val}, 'conditionen': condition}
import datetime
from sqlalchemy import and_, or_
from flask import render_template
from detectweb.models.predict import Predict
week, month, year, tenyear = 7, 30, 360, 3600
delta = {"week": 1, "month": 1, "year": 30, "tenyear": 360}
def getStatistics(timeline, type_, all_of_same_city, time_now, current_user):
assign_timeline = {"week": -1, "month": -1, "year": -1, "tenyear": -1}
assign_type = {"allkinds": -1, "apple": -1, "cherry": -1, "corn": -1, "grape": -1,
"peach": -1, "pepper": -1, "potato": -1, "tomato": -1}
if timeline not in assign_timeline.keys() or type_ not in assign_type.keys():
return render_template('404.html')
alltimes = []
# 最近一周数据
predicts_certain_time = eval("all_of_same_city.filter(and_((Predict.predict_time >= time_now - datetime.timedelta(days={})), Predict.predict_time <= time_now))".format(timeline))
if type_ != "allkinds":
predicts_certain_time = eval("predicts_certain_time.filter(or_(Predict.predict_result.like('{}%'), Predict.predict_result.like('{}%')))".format(type_, type_.capitalize()))
alltimes.append(predicts_certain_time.count())
last_time = predicts_certain_time
for i in range(eval(timeline)-delta[timeline], 0, -delta[timeline]):
this_time = last_time.filter(and_((Predict.predict_time >= time_now - datetime.timedelta(days=i)), Predict.predict_time <= time_now))
last_time = this_time
alltimes.append(this_time.count())
assign_timeline[timeline] = alltimes
assign_type[type_] = 1
return render_template(
'dashboard.html',
assign_timeline=assign_timeline,
assign_type=assign_type,
timeline=timeline,
type_=type_,
user=current_user)
# def init_model(value):
# exec("model_{} = t.load('static/models/{}model.pkl', map_location=device)".format(value, value.lower()))
# exec("model_{} = model_{}.to(device)".format(value, value))
# eval("model_{}.eval()".format(value))
# return eval("model_{}".format(value))
# def delete_model(model):
# try:
# del model
# return True
# except:
# return False
# from memory_profiler import profile
# @profile
# def infer_special(value, image):
# model = init_model(value)
# print("预测{}".format(value))
# condition, val = infer(model, image, True)
# condition = eval("{}[condition]".format(value))
# val = str(float(val) / 100)[:9]
# del model
# return {'prediction': {'species': value, 'condition': condition, 'value': val}}
|