Spaces:
Configuration error
Configuration error
Delete run.py
Browse files
run.py
DELETED
|
@@ -1,162 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import logging
|
| 3 |
-
import os
|
| 4 |
-
import time
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
import rembg
|
| 8 |
-
import torch
|
| 9 |
-
from PIL import Image
|
| 10 |
-
|
| 11 |
-
from tsr.system import TSR
|
| 12 |
-
from tsr.utils import remove_background, resize_foreground, save_video
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class Timer:
|
| 16 |
-
def __init__(self):
|
| 17 |
-
self.items = {}
|
| 18 |
-
self.time_scale = 1000.0 # ms
|
| 19 |
-
self.time_unit = "ms"
|
| 20 |
-
|
| 21 |
-
def start(self, name: str) -> None:
|
| 22 |
-
if torch.cuda.is_available():
|
| 23 |
-
torch.cuda.synchronize()
|
| 24 |
-
self.items[name] = time.time()
|
| 25 |
-
logging.info(f"{name} ...")
|
| 26 |
-
|
| 27 |
-
def end(self, name: str) -> float:
|
| 28 |
-
if name not in self.items:
|
| 29 |
-
return
|
| 30 |
-
if torch.cuda.is_available():
|
| 31 |
-
torch.cuda.synchronize()
|
| 32 |
-
start_time = self.items.pop(name)
|
| 33 |
-
delta = time.time() - start_time
|
| 34 |
-
t = delta * self.time_scale
|
| 35 |
-
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.")
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
timer = Timer()
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
logging.basicConfig(
|
| 42 |
-
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
|
| 43 |
-
)
|
| 44 |
-
parser = argparse.ArgumentParser()
|
| 45 |
-
parser.add_argument("image", type=str, nargs="+", help="Path to input image(s).")
|
| 46 |
-
parser.add_argument(
|
| 47 |
-
"--device",
|
| 48 |
-
default="cuda:0",
|
| 49 |
-
type=str,
|
| 50 |
-
help="Device to use. If no CUDA-compatible device is found, will fallback to 'cpu'. Default: 'cuda:0'",
|
| 51 |
-
)
|
| 52 |
-
parser.add_argument(
|
| 53 |
-
"--pretrained-model-name-or-path",
|
| 54 |
-
default="stabilityai/TripoSR",
|
| 55 |
-
type=str,
|
| 56 |
-
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/TripoSR'",
|
| 57 |
-
)
|
| 58 |
-
parser.add_argument(
|
| 59 |
-
"--chunk-size",
|
| 60 |
-
default=8192,
|
| 61 |
-
type=int,
|
| 62 |
-
help="Evaluation chunk size for surface extraction and rendering. Smaller chunk size reduces VRAM usage but increases computation time. 0 for no chunking. Default: 8192",
|
| 63 |
-
)
|
| 64 |
-
parser.add_argument(
|
| 65 |
-
"--mc-resolution",
|
| 66 |
-
default=256,
|
| 67 |
-
type=int,
|
| 68 |
-
help="Marching cubes grid resolution. Default: 256"
|
| 69 |
-
)
|
| 70 |
-
parser.add_argument(
|
| 71 |
-
"--no-remove-bg",
|
| 72 |
-
action="store_true",
|
| 73 |
-
help="If specified, the background will NOT be automatically removed from the input image, and the input image should be an RGB image with gray background and properly-sized foreground. Default: false",
|
| 74 |
-
)
|
| 75 |
-
parser.add_argument(
|
| 76 |
-
"--foreground-ratio",
|
| 77 |
-
default=0.85,
|
| 78 |
-
type=float,
|
| 79 |
-
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
|
| 80 |
-
)
|
| 81 |
-
parser.add_argument(
|
| 82 |
-
"--output-dir",
|
| 83 |
-
default="output/",
|
| 84 |
-
type=str,
|
| 85 |
-
help="Output directory to save the results. Default: 'output/'",
|
| 86 |
-
)
|
| 87 |
-
parser.add_argument(
|
| 88 |
-
"--model-save-format",
|
| 89 |
-
default="obj",
|
| 90 |
-
type=str,
|
| 91 |
-
choices=["obj", "glb"],
|
| 92 |
-
help="Format to save the extracted mesh. Default: 'obj'",
|
| 93 |
-
)
|
| 94 |
-
parser.add_argument(
|
| 95 |
-
"--render",
|
| 96 |
-
action="store_true",
|
| 97 |
-
help="If specified, save a NeRF-rendered video. Default: false",
|
| 98 |
-
)
|
| 99 |
-
args = parser.parse_args()
|
| 100 |
-
|
| 101 |
-
output_dir = args.output_dir
|
| 102 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 103 |
-
|
| 104 |
-
device = args.device
|
| 105 |
-
if not torch.cuda.is_available():
|
| 106 |
-
device = "cpu"
|
| 107 |
-
|
| 108 |
-
timer.start("Initializing model")
|
| 109 |
-
model = TSR.from_pretrained(
|
| 110 |
-
args.pretrained_model_name_or_path,
|
| 111 |
-
config_name="config.yaml",
|
| 112 |
-
weight_name="model.ckpt",
|
| 113 |
-
)
|
| 114 |
-
model.renderer.set_chunk_size(args.chunk_size)
|
| 115 |
-
model.to(device)
|
| 116 |
-
timer.end("Initializing model")
|
| 117 |
-
|
| 118 |
-
timer.start("Processing images")
|
| 119 |
-
images = []
|
| 120 |
-
|
| 121 |
-
if args.no_remove_bg:
|
| 122 |
-
rembg_session = None
|
| 123 |
-
else:
|
| 124 |
-
rembg_session = rembg.new_session()
|
| 125 |
-
|
| 126 |
-
for i, image_path in enumerate(args.image):
|
| 127 |
-
if args.no_remove_bg:
|
| 128 |
-
image = np.array(Image.open(image_path).convert("RGB"))
|
| 129 |
-
else:
|
| 130 |
-
image = remove_background(Image.open(image_path), rembg_session)
|
| 131 |
-
image = resize_foreground(image, args.foreground_ratio)
|
| 132 |
-
image = np.array(image).astype(np.float32) / 255.0
|
| 133 |
-
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
| 134 |
-
image = Image.fromarray((image * 255.0).astype(np.uint8))
|
| 135 |
-
if not os.path.exists(os.path.join(output_dir, str(i))):
|
| 136 |
-
os.makedirs(os.path.join(output_dir, str(i)))
|
| 137 |
-
image.save(os.path.join(output_dir, str(i), f"input.png"))
|
| 138 |
-
images.append(image)
|
| 139 |
-
timer.end("Processing images")
|
| 140 |
-
|
| 141 |
-
for i, image in enumerate(images):
|
| 142 |
-
logging.info(f"Running image {i + 1}/{len(images)} ...")
|
| 143 |
-
|
| 144 |
-
timer.start("Running model")
|
| 145 |
-
with torch.no_grad():
|
| 146 |
-
scene_codes = model([image], device=device)
|
| 147 |
-
timer.end("Running model")
|
| 148 |
-
|
| 149 |
-
if args.render:
|
| 150 |
-
timer.start("Rendering")
|
| 151 |
-
render_images = model.render(scene_codes, n_views=30, return_type="pil")
|
| 152 |
-
for ri, render_image in enumerate(render_images[0]):
|
| 153 |
-
render_image.save(os.path.join(output_dir, str(i), f"render_{ri:03d}.png"))
|
| 154 |
-
save_video(
|
| 155 |
-
render_images[0], os.path.join(output_dir, str(i), f"render.mp4"), fps=30
|
| 156 |
-
)
|
| 157 |
-
timer.end("Rendering")
|
| 158 |
-
|
| 159 |
-
timer.start("Exporting mesh")
|
| 160 |
-
meshes = model.extract_mesh(scene_codes, resolution=args.mc_resolution)
|
| 161 |
-
meshes[0].export(os.path.join(output_dir, str(i), f"mesh.{args.model_save_format}"))
|
| 162 |
-
timer.end("Exporting mesh")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|