hannahcyberey's picture
Upload 11 files
93a19af verified
import json
import logging
import tempfile
import uuid
from typing import Optional, Union, Dict, List, Any
import pyarrow as pa
import pyarrow.parquet as pq
from huggingface_hub import CommitScheduler
from huggingface_hub.hf_api import HfApi
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s')
logger = logging.getLogger(__name__)
def load_scheduler():
return ParquetScheduler(
repo_id="hannahcyberey/Refusal-Steering-Logs", every=10,
private=True,
squash_history=False,
schema={
"session_id": {"_type": "Value", "dtype": "string"},
"prompt": {"_type": "Value", "dtype": "string"},
"steering": {"_type": "Value", "dtype": "bool"},
"coeff": {"_type": "Value", "dtype": "float64"},
"top_p": {"_type": "Value", "dtype": "float64"},
"temperature": {"_type": "Value", "dtype": "float64"},
"output": {"_type": "Value", "dtype": "string"},
"upvote": {"_type": "Value", "dtype": "bool"},
"timestamp": {"_type": "Value", "dtype": "string"},
}
)
class ParquetScheduler(CommitScheduler):
"""
Reference: https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
Usage:
Configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub.
1 `.append` call will result in 1 row in your final dataset.
List of possible dtypes:
https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value.
```py
# Start scheduler
>>> scheduler = ParquetScheduler(
... repo_id="my-parquet-dataset",
... schema={
... "prompt": {"_type": "Value", "dtype": "string"},
... "negative_prompt": {"_type": "Value", "dtype": "string"},
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
... "image": {"_type": "Image"},
... },
... )
# Append some data to be uploaded
>>> scheduler.append({...})
"""
def __init__(
self,
*,
repo_id: str,
schema: Dict[str, Dict[str, str]],
every: Union[int, float] = 5, # Number of minutes between each commits
path_in_repo: Optional[str] = "data",
repo_type: Optional[str] = "dataset",
revision: Optional[str] = None,
private: bool = False,
token: Optional[str] = None,
allow_patterns: Union[List[str], str, None] = None,
ignore_patterns: Union[List[str], str, None] = None,
squash_history: Optional[bool] = False,
hf_api: Optional[HfApi] = None,
) -> None:
super().__init__(
repo_id=repo_id,
folder_path="dummy", # not used by the scheduler
every=every,
path_in_repo=path_in_repo,
repo_type=repo_type,
revision=revision,
private=private,
token=token,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
squash_history=squash_history,
hf_api=hf_api,
)
self._rows: List[Dict[str, Any]] = []
self._schema = schema
def append(self, row: Dict[str, Any]) -> None:
"""Add a new item to be uploaded."""
with self.lock:
self._rows.append(row)
def push_to_hub(self):
# Check for new rows to push
with self.lock:
rows = self._rows
self._rows = []
if not rows:
return
logger.info("Got %d item(s) to commit.", len(rows))
# Complete rows if needed
for row in rows:
for feature in self._schema:
if feature not in row:
row[feature] = None
# Export items to Arrow format
table = pa.Table.from_pylist(rows)
# Add metadata (used by datasets library)
table = table.replace_schema_metadata(
{"huggingface": json.dumps({"info": {"features": self._schema}})}
)
# Write to parquet file
archive_file = tempfile.NamedTemporaryFile()
pq.write_table(table, archive_file.name)
# Upload
self.api.upload_file(
repo_id=self.repo_id,
repo_type=self.repo_type,
revision=self.revision,
path_in_repo=f"{uuid.uuid4()}.parquet",
path_or_fileobj=archive_file.name,
)
logging.info("Commit completed.")
# Cleanup
archive_file.close()