Spaces:
Running
on
Zero
Running
on
Zero
import logging, json | |
import threading | |
from pathlib import Path | |
from typing import Dict | |
import spaces | |
import pandas as pd | |
from transformers import TextIteratorStreamer | |
import gradio as gr | |
from gradio_toggle import Toggle | |
from model import load_model | |
from scheduler import load_scheduler | |
from schemas import UserRequest, SteeringOutput, CONFIG | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s:%(message)s') | |
logger = logging.getLogger(__name__) | |
model_name = "Llama-3.1-8B-Instruct" | |
instances = {} | |
scheduler = load_scheduler() | |
model = load_model() | |
examples = pd.read_csv("assets/examples.csv") | |
HEAD = """ | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.7.2/css/all.min.css" integrity="sha512-Evv84Mr4kqVGRNSgIGL/F/aIDqQb7xQ2vcrdIwxfjThSH8CSR7PBEakCr51Ck+w+/U6swU2Im1vVX0SVk9ABhg==" crossorigin="anonymous" referrerpolicy="no-referrer" /> | |
""" | |
HTML = f""" | |
<div id="banner"> | |
<h1><img src="/gradio_api/file=assets/rudder_3094973.png"> LLM Censorship Steering</h1> | |
<div id="links" class="row" style="margin-bottom: .8em;"> | |
<i class="fa-solid fa-file-pdf fa-lg"></i><a href="https://arxiv.org/abs/2504.17130"> Paper</a> | |
<i class="fa-solid fa-blog fa-lg"></i><a href="https://hannahxchen.github.io/blog/2025/censorship-steering"> Blog Post</a> | |
<i class="fa-brands fa-github fa-lg"></i><a href="https://github.com/hannahxchen/llm-censorship-steering"> Code</a> | |
</div> | |
<div id="cover"> | |
<img src="/gradio_api/file=assets/demo-cover.png"> | |
</div> | |
</div> | |
""" | |
CSS = """ | |
div.gradio-container .app { | |
max-width: 1600px !important; | |
} | |
div#banner { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
justify-content: center; | |
h1 { | |
font-size: 32px; | |
line-height: 1.35em; | |
margin-bottom: 0em; | |
display: flex; | |
img { | |
display: inline; | |
height: 1.35em; | |
} | |
} | |
div#cover img { | |
max-height: 130px; | |
padding-top: 0.5em; | |
} | |
} | |
@media (max-width: 500px) { | |
div#banner { | |
h1 { | |
font-size: 22px; | |
} | |
div#links { | |
font-size: 14px; | |
} | |
} | |
div#model-state p { | |
font-size: 14px; | |
} | |
} | |
div#main-components { | |
align-items: flex-end; | |
} | |
div#steering-toggle { | |
padding-top: 8px; | |
padding-bottom: 8px; | |
.toggle-label { | |
color: var(--body-text-color); | |
} | |
span p { | |
font-size: var(--block-info-text-size); | |
line-height: var(--line-sm); | |
color: var(--block-label-text-color); | |
} | |
} | |
div#coeff-slider { | |
padding-bottom: 5px; | |
.slider_input_container span {color: var(--body-text-color);} | |
.slider_input_container { | |
display: flex; | |
flex-wrap: wrap; | |
input {appearance: auto;} | |
} | |
} | |
div#coeff-slider .wrap .head { | |
justify-content: unset; | |
label {margin-right: var(--size-2);} | |
label span { | |
color: var(--body-text-color); | |
margin-bottom: 0; | |
} | |
} | |
""" | |
slider_info = """\ | |
<div style='display: flex; justify-content: space-between; line-height: normal;'>\ | |
<span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>Less censorship</span>\ | |
<span style='font-size: var(--block-info-text-size); color: var(--block-label-text-color);'>More censorship</span>\ | |
</div>\ | |
"""\ | |
slider_ticks = """\ | |
<datalist id='values' style='display: flex; justify-content: space-between; width: 100%; padding: 0 6px;'>\ | |
<option value='-2' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>-2</option>\ | |
<option value='-1' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>-1</option>\ | |
<option value='0' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>0</option>\ | |
<option value='1' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>1</option>\ | |
<option value='2' style='font-size: 13px; line-height: var(--spacing-xs); width: 1px; display: flex; justify-content: center;'>2</option>\ | |
</datalist>\ | |
""" | |
JS = """ | |
async() => { | |
const node = document.querySelector("div.slider_input_container"); | |
node.insertAdjacentHTML('beforebegin', "%s"); | |
const sliderNode = document.querySelector("input#range_id_0"); | |
sliderNode.insertAdjacentHTML('afterend', "%s"); | |
sliderNode.setAttribute("list", "values"); | |
document.querySelector('span.min_value').remove(); | |
document.querySelector('span.max_value').remove(); | |
} | |
""" % (slider_info, slider_ticks) | |
def initialize_instance(request: gr.Request): | |
instances[request.session_hash] = [] | |
logger.info("Number of connections: %d", len(instances)) | |
return request.session_hash | |
def cleanup_instance(request: gr.Request): | |
session_id = request.session_hash | |
if session_id in instances: | |
for data in instances[session_id]: | |
if isinstance(data, SteeringOutput): | |
scheduler.append(data.model_dump()) | |
del instances[session_id] | |
logger.info("Number of connections: %d", len(instances)) | |
def generate(prompt: str, steering: bool, coeff: float, generation_config: Dict[str, float]): | |
streamer = TextIteratorStreamer(model.tokenizer, timeout=10, skip_prompt=True, skip_special_tokens=True) | |
thread = threading.Thread( | |
target=model.generate, | |
args=(prompt, streamer, steering, coeff, generation_config) | |
) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
yield generated_text | |
def generate_output( | |
session_id: str, prompt: str, steering: bool, coeff: float, | |
max_new_tokens: int, top_p: float, temperature: float | |
): | |
req = UserRequest( | |
session_id=session_id, prompt=prompt, steering=steering, coeff=coeff, | |
max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature | |
) | |
instances[session_id].append(req) | |
yield from generate(prompt, steering, coeff, req.generation_config()) | |
async def post_process(session_id, output): | |
req = instances[session_id].pop() | |
steering_output = SteeringOutput(**req.model_dump(), output=output) | |
instances[session_id].append(steering_output) | |
return gr.update(interactive=True), gr.update(interactive=True) | |
async def output_feedback(session_id, feedback): | |
try: | |
data = instances[session_id].pop() | |
if "Upvote" in feedback: | |
setattr(data, "upvote", True) | |
elif "Downvote" in feedback: | |
setattr(data, "upvote", False) | |
instances[session_id].append(data) | |
gr.Info("Thank you for your feedback!") | |
except: | |
logger.debug("Feedback submission error") | |
gr.set_static_paths(paths=[Path.cwd().absolute() / "assets"]) | |
theme = gr.themes.Base(primary_hue="emerald", text_size=gr.themes.sizes.text_lg).set() | |
with gr.Blocks(title="LLM Censorship Steering", theme=theme, head=HEAD, css=CSS, js=JS) as demo: | |
session_id = gr.State() | |
gr.HTML(HTML) | |
with gr.Row(elem_id="main-components"): | |
with gr.Column(scale=1): | |
gr.Markdown(f'🤖 {model_name}') | |
with gr.Row(): | |
steer_toggle = Toggle(label="Steering", info="Turn off to generate original outputs", value=True, interactive=True, scale=2, elem_id="steering-toggle") | |
coeff = gr.Slider(label="Coefficient:", value=-1.0, minimum=-2, maximum=2, step=0.1, scale=8, show_reset_button=False, elem_id="coeff-slider") | |
def update_toggle(toggle_value): | |
if toggle_value is True: | |
return gr.update(label="Steering", info="Turn off to generate original outputs"), gr.update(interactive=True) | |
else: | |
return gr.update(label="No Steering", info="Turn on to steer model outputs"), gr.update(interactive=False) | |
with gr.Accordion("⚙️ Advanced Settings", open=False): | |
with gr.Row(): | |
temperature = gr.Slider(0, 1, step=0.1, value=CONFIG["temperature"], interactive=True, label="Temperature", scale=2) | |
top_p = gr.Slider(0, 1, step=0.1, value=CONFIG["top_p"], interactive=True, label="Top p", scale=2) | |
max_new_tokens = gr.Number(CONFIG["max_new_tokens"], minimum=10, maximum=CONFIG["max_new_tokens"], interactive=True, label="Max new tokens", scale=1) | |
input_text = gr.Textbox(label="Input", placeholder="Enter your prompt here...", lines=6, interactive=True) | |
with gr.Row(): | |
clear_btn = gr.ClearButton() | |
generate_btn = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1): | |
output = gr.Textbox(label="Output", lines=15, max_lines=15, interactive=False) | |
with gr.Row(): | |
upvote_btn = gr.Button("👍 Upvote", interactive=False) | |
downvote_btn = gr.Button("👎 Downvote", interactive=False) | |
gr.HTML("<p>‼️ For research purposes, we log user inputs and generated outputs. Please avoid submitting any confidential or personal information.</p>") | |
gr.Markdown("#### Examples") | |
gr.Examples(examples=examples[examples["type"] == "harmful"].prompt.tolist(), inputs=input_text, label="Harmful") | |
gr.Examples(examples=examples[examples["type"] == "harmless"].prompt.tolist(), inputs=input_text, label="Harmless") | |
def clear(): | |
return gr.update(interactive=False), gr.update(interactive=False) | |
clear_btn.add([input_text, output]) | |
generate_btn.click( | |
generate_output, inputs=[session_id, input_text, steer_toggle, coeff, max_new_tokens, top_p, temperature], outputs=output | |
).success( | |
post_process, inputs=[session_id, output], outputs=[upvote_btn, downvote_btn] | |
) | |
upvote_btn.click(output_feedback, inputs=[session_id, upvote_btn]) | |
downvote_btn.click(output_feedback, inputs=[session_id, downvote_btn]) | |
demo.load(initialize_instance, outputs=session_id) | |
demo.unload(cleanup_instance) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=5) | |
demo.launch(debug=True) | |