|
|
|
import streamlit as st
|
|
import pandas as pd
|
|
import joblib
|
|
import numpy as np
|
|
from datetime import datetime
|
|
|
|
|
|
model = joblib.load("restaurant_revenue_model.pkl")
|
|
|
|
|
|
st.title("🍽️ Restaurant Revenue Predictor")
|
|
st.write("Restoran bilgilerinizi girerek tahmini geliri öğrenin.")
|
|
|
|
|
|
open_date = st.date_input("Açılış Tarihi", value=datetime(2015, 1, 1))
|
|
years = datetime.now().year - open_date.year
|
|
|
|
city_group = st.selectbox("City Group", ["Big Cities", "Other"])
|
|
type_rest = st.selectbox("Restaurant Type", ["IL", "FC", "DT", "MB"])
|
|
|
|
|
|
inputs = {}
|
|
for i in range(1, 38):
|
|
inputs[f"P{i}"] = st.number_input(f"Feature P{i}", value=0)
|
|
|
|
|
|
inputs["Years"] = years
|
|
inputs["City Group_Other"] = 1 if city_group == "Other" else 0
|
|
inputs["Type_FC"] = 1 if type_rest == "FC" else 0
|
|
inputs["Type_IL"] = 1 if type_rest == "IL" else 0
|
|
inputs["Type_MB"] = 1 if type_rest == "MB" else 0
|
|
|
|
|
|
feature_order = [f"P{i}" for i in range(1, 38)] + [
|
|
"Years", "City Group_Other", "Type_FC", "Type_IL", "Type_MB"
|
|
]
|
|
|
|
input_df = pd.DataFrame([inputs])[feature_order]
|
|
|
|
|
|
if st.button("Tahmini Geliri Göster"):
|
|
prediction = model.predict(input_df)[0]
|
|
st.success(f"📊 Tahmini Gelir: ${prediction:,.2f}")
|
|
|