Spaces:
Runtime error
Runtime error
| # Use Python 3.11 slim image for better compatibility with HF Spaces | |
| FROM python:3.11-slim | |
| # Set working directory | |
| WORKDIR /app | |
| # Install system dependencies | |
| RUN apt-get update && apt-get install -y \ | |
| git \ | |
| curl \ | |
| build-essential \ | |
| && rm -rf /var/lib/apt/lists/* | |
| # Copy requirements first for better Docker layer caching | |
| COPY requirements.txt . | |
| # Install Python dependencies | |
| RUN pip install --no-cache-dir --upgrade pip | |
| RUN pip install --no-cache-dir -r requirements.txt | |
| # Copy application files | |
| COPY . . | |
| # Create directories for models and cache | |
| RUN mkdir -p /app/cache /app/models | |
| # Set environment variables for HF Spaces | |
| ENV PYTHONPATH=/app | |
| ENV PYTHONUNBUFFERED=1 | |
| ENV HF_HOME=/app/cache | |
| ENV TRANSFORMERS_CACHE=/app/cache | |
| ENV TORCH_HOME=/app/cache | |
| # Pre-download models to reduce startup time | |
| RUN python -c "\ | |
| from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification; \ | |
| import torch; \ | |
| print('π¦ Pre-downloading DistilGPT-2...'); \ | |
| tokenizer = AutoTokenizer.from_pretrained('distilgpt2'); \ | |
| model = AutoModelForCausalLM.from_pretrained('distilgpt2'); \ | |
| print('π¦ Pre-downloading RoBERTa sentiment model...'); \ | |
| sentiment_model = AutoModelForSequenceClassification.from_pretrained('cardiffnlp/twitter-roberta-base-sentiment-latest'); \ | |
| sentiment_tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-sentiment-latest'); \ | |
| print('β Models downloaded successfully!')" | |
| # Expose port 7860 (HF Spaces default) | |
| EXPOSE 7860 | |
| # Health check | |
| HEALTHCHECK --interval=30s --timeout=30s --start-period=60s --retries=3 \ | |
| CMD curl -f http://localhost:7860/health || exit 1 | |
| # Run the application | |
| CMD ["python", "app.py"] | |