hamdah926's picture
Update app.py
265bcac verified
#The libraries used
import gradio as gr
import pandas as pd
from transformers import pipeline
#Implementing the Hugging Face NER model
ner = pipeline('ner', model = 'FacebookAI/xlm-roberta-large-finetuned-conll03-english', grouped_entities = True)
#a function to split each sentence containing an entity in the text by commas.
#start to comma, comma to comma, last comma to the remaining text
def split_sentences(text, start, end):
#comma before entity
start_comma = text.rfind(',', 0, start)
if start_comma == -1: #if rfind did not find a comma before the entity:
start_comma = 0 #start from the beginning (first sentence)
else:
start_comma += 1 #if comma found, then start from the char after the comma
# comma after the entity
end_comma = text.find(',', end)
if end_comma == -1:
return text[start_comma:].strip() #if it did not find a comma, return the text from the last comma to the end
else: #if it did find a comma, go to that comma
return text[start_comma:end_comma].strip()
#Conveting the NER output into a DataFrame:
def entities_to_df(text):
all_entities = []
entities = ner(text)#the NER model will be used on the input text
#putting the entities into a data frame with the needed keys + calling the split sentences fumction in the for loop
for entity in entities:
sentence = split_sentences(text, entity['start'], entity['end'])
all_entities.append({
"Entity": entity['word'],
"Type" : entity['entity_group'], #loc, org, per, misc
"Score": float((entity['score'])),
"Start": entity['start'],
"End": entity['end'],
"Sentence": sentence,
})
df = pd.DataFrame(all_entities)
#the df in the output did not round the score above so I rounded it after creating the df
df['Score'] = df['Score'].round(4)
return df
#a function to highlight the entitties of the Dataframe using HTML
def highlight_entities(text):
df = entities_to_df(text)
highlighted_text = ""
last_idx = 0
# Iterating the DF rows in order
for i, entity in df.iterrows(): #iterrows is a function in the df to iterate by rows
# Add the text before the entity
highlighted_text += text[last_idx:entity['Start']]
#highlighting the entities in RED by using HTML div and css and thiers types(per, org,loc or misc)
highlighted_text += f"<div style='background-color: red; display: inline;'>{entity['Entity']} ({entity['Type']})</div>"
#updating the index after the current entity
last_idx = entity['End']
# add the text after the last entity
highlighted_text += text[last_idx:]
# again we will use an HTML div block to make the output looks better :)
return f"<div>{highlighted_text}</div>"
# The last function which will combine the two previous functions and will be used in the interface
def NER_output(text):
html = highlight_entities(text)
df = entities_to_df(text)
return html,df
#a defualt value that will be used in the gradio interface input
default_value ="J.K. Rowling wrote the Harry Potter series, which was published by Bloomsbury Publishing."
# Gradio Interface
demo = gr.Interface(
fn=NER_output,
inputs=gr.Textbox(label="Enter text:", lines=6, value = default_value),
outputs=[gr.HTML(label="Entities Highlighted"), gr.Dataframe(label="Entities in DataFrame format")],
title = "NER model with highlighted entities"
#above, we used the NER_output, and since that function return the html and the df there will be two outputs
#The first is gr.HTML and the second gr.Datagrame
)
demo.launch()