Update DataLoader.py
Browse files- DataLoader.py +3 -13
DataLoader.py
CHANGED
@@ -2,10 +2,7 @@
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
-
import requests
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
import yfinance as yf
|
8 |
-
from datetime import datetime
|
9 |
from pygooglenews import GoogleNews
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
from transformers import pipeline
|
@@ -29,12 +26,13 @@ class DataLoader:
|
|
29 |
|
30 |
|
31 |
def get_stock_data(self):
|
32 |
-
data = yf.download(self.ticker, period = self.time_period_stock)
|
33 |
df = pd.DataFrame()
|
34 |
df['Open'] = data['Open']
|
35 |
df['Close'] = data['Close']
|
36 |
df['High'] = data['High']
|
37 |
df['Low'] = data['Low']
|
|
|
38 |
|
39 |
return df
|
40 |
|
@@ -108,12 +106,4 @@ class DataLoader:
|
|
108 |
for column in news_columns:
|
109 |
if combined_data[column][i] == 0:
|
110 |
combined_data[column][i] = combined_data[column][i-1] * decay_rate
|
111 |
-
return combined_data
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
|
|
|
|
5 |
import yfinance as yf
|
|
|
6 |
from pygooglenews import GoogleNews
|
7 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
from transformers import pipeline
|
|
|
26 |
|
27 |
|
28 |
def get_stock_data(self):
|
29 |
+
data = yf.download(self.ticker , period = self.time_period_stock)
|
30 |
df = pd.DataFrame()
|
31 |
df['Open'] = data['Open']
|
32 |
df['Close'] = data['Close']
|
33 |
df['High'] = data['High']
|
34 |
df['Low'] = data['Low']
|
35 |
+
df['Volume'] = data['Volume']
|
36 |
|
37 |
return df
|
38 |
|
|
|
106 |
for column in news_columns:
|
107 |
if combined_data[column][i] == 0:
|
108 |
combined_data[column][i] = combined_data[column][i-1] * decay_rate
|
109 |
+
return combined_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|