halme commited on
Commit
137befc
·
1 Parent(s): 1abdb84

UI and functionality done

Browse files
Files changed (1) hide show
  1. app.py +12 -40
app.py CHANGED
@@ -1,18 +1,12 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- #from unsloth import FastLanguageModel
4
  from peft import AutoPeftModelForCausalLM
5
  from transformers import AutoTokenizer
6
 
7
-
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
  """
11
- #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
- #client = InferenceClient("halme/id2223_lora_model")
13
-
14
 
15
- def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,):
16
  messages = [{"role": "system", "content": system_message}]
17
 
18
  for val in history:
@@ -23,32 +17,10 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
23
 
24
  messages.append({"role": "user", "content": message})
25
 
26
- #response = ""
27
-
28
- """ for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
29
- token = message.choices[0].delta.content
30
-
31
- response += token
32
- yield response """
33
-
34
- """ model, tokenizer = FastLanguageModel.from_pretrained(
35
- model_name = "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
36
- max_seq_length = max_tokens,
37
- dtype = None,
38
- load_in_4bit = True,
39
- ) """
40
-
41
  model = AutoPeftModelForCausalLM.from_pretrained(
42
  "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
43
  )
44
- tokenizer = AutoTokenizer.from_pretrained("halme/id2223_lora_model")
45
-
46
- #FastLanguageModel.for_inference(model) # Enable native 2x faster inference
47
-
48
- """messages = [
49
- {"role": "user", "content": "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"},
50
- ] """
51
-
52
  inputs = tokenizer.apply_chat_template(
53
  messages,
54
  tokenize = True,
@@ -56,12 +28,12 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
56
  return_tensors = "pt",
57
  )
58
 
59
- from transformers import TextStreamer
60
- text_streamer = TextStreamer(tokenizer, skip_prompt = True)
61
-
62
- yield model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,
63
- use_cache = True, temperature = 1.5, min_p = 0.1)
64
 
 
65
 
66
  """
67
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
@@ -70,14 +42,14 @@ demo = gr.ChatInterface(
70
  respond,
71
  additional_inputs=[
72
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
73
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
74
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
75
  gr.Slider(
76
  minimum=0.1,
77
  maximum=1.0,
78
- value=0.95,
79
- step=0.05,
80
- label="Top-p (nucleus sampling)",
81
  ),
82
  ],
83
  )
 
1
  import gradio as gr
 
 
2
  from peft import AutoPeftModelForCausalLM
3
  from transformers import AutoTokenizer
4
 
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
 
 
 
8
 
9
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,):
10
  messages = [{"role": "system", "content": system_message}]
11
 
12
  for val in history:
 
17
 
18
  messages.append({"role": "user", "content": message})
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  model = AutoPeftModelForCausalLM.from_pretrained(
21
  "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
22
  )
23
+ tokenizer = AutoTokenizer.from_pretrained("halme/id2223_lora_model")
 
 
 
 
 
 
 
24
  inputs = tokenizer.apply_chat_template(
25
  messages,
26
  tokenize = True,
 
28
  return_tensors = "pt",
29
  )
30
 
31
+ output = model.generate(input_ids = inputs, max_new_tokens = max_tokens,
32
+ use_cache = True, temperature = temperature, min_p = min_p)
33
+
34
+ response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
 
35
 
36
+ yield response.split('assistant')[-1]
37
 
38
  """
39
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
42
  respond,
43
  additional_inputs=[
44
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
45
+ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
46
+ gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
47
  gr.Slider(
48
  minimum=0.1,
49
  maximum=1.0,
50
+ value=0.99,
51
+ step=0.01,
52
+ label="Min-p",
53
  ),
54
  ],
55
  )