Spaces:
Sleeping
Sleeping
UI and functionality done
Browse files
app.py
CHANGED
@@ -1,18 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
#from unsloth import FastLanguageModel
|
4 |
from peft import AutoPeftModelForCausalLM
|
5 |
from transformers import AutoTokenizer
|
6 |
|
7 |
-
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
11 |
-
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
-
#client = InferenceClient("halme/id2223_lora_model")
|
13 |
-
|
14 |
|
15 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature,
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
|
18 |
for val in history:
|
@@ -23,32 +17,10 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
23 |
|
24 |
messages.append({"role": "user", "content": message})
|
25 |
|
26 |
-
#response = ""
|
27 |
-
|
28 |
-
""" for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
|
29 |
-
token = message.choices[0].delta.content
|
30 |
-
|
31 |
-
response += token
|
32 |
-
yield response """
|
33 |
-
|
34 |
-
""" model, tokenizer = FastLanguageModel.from_pretrained(
|
35 |
-
model_name = "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
36 |
-
max_seq_length = max_tokens,
|
37 |
-
dtype = None,
|
38 |
-
load_in_4bit = True,
|
39 |
-
) """
|
40 |
-
|
41 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
42 |
"halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
43 |
)
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained("halme/id2223_lora_model")
|
45 |
-
|
46 |
-
#FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
47 |
-
|
48 |
-
"""messages = [
|
49 |
-
{"role": "user", "content": "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"},
|
50 |
-
] """
|
51 |
-
|
52 |
inputs = tokenizer.apply_chat_template(
|
53 |
messages,
|
54 |
tokenize = True,
|
@@ -56,12 +28,12 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
56 |
return_tensors = "pt",
|
57 |
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
use_cache = True, temperature = 1.5, min_p = 0.1)
|
64 |
|
|
|
65 |
|
66 |
"""
|
67 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
@@ -70,14 +42,14 @@ demo = gr.ChatInterface(
|
|
70 |
respond,
|
71 |
additional_inputs=[
|
72 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
73 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
74 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=
|
75 |
gr.Slider(
|
76 |
minimum=0.1,
|
77 |
maximum=1.0,
|
78 |
-
value=0.
|
79 |
-
step=0.
|
80 |
-
label="
|
81 |
),
|
82 |
],
|
83 |
)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from peft import AutoPeftModelForCausalLM
|
3 |
from transformers import AutoTokenizer
|
4 |
|
|
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
|
|
|
|
|
|
8 |
|
9 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, min_p,):
|
10 |
messages = [{"role": "system", "content": system_message}]
|
11 |
|
12 |
for val in history:
|
|
|
17 |
|
18 |
messages.append({"role": "user", "content": message})
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
21 |
"halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
22 |
)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("halme/id2223_lora_model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
inputs = tokenizer.apply_chat_template(
|
25 |
messages,
|
26 |
tokenize = True,
|
|
|
28 |
return_tensors = "pt",
|
29 |
)
|
30 |
|
31 |
+
output = model.generate(input_ids = inputs, max_new_tokens = max_tokens,
|
32 |
+
use_cache = True, temperature = temperature, min_p = min_p)
|
33 |
+
|
34 |
+
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
|
|
35 |
|
36 |
+
yield response.split('assistant')[-1]
|
37 |
|
38 |
"""
|
39 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
42 |
respond,
|
43 |
additional_inputs=[
|
44 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
45 |
+
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
|
46 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature"),
|
47 |
gr.Slider(
|
48 |
minimum=0.1,
|
49 |
maximum=1.0,
|
50 |
+
value=0.99,
|
51 |
+
step=0.01,
|
52 |
+
label="Min-p",
|
53 |
),
|
54 |
],
|
55 |
)
|